Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Sci Adv ; 9(21): eadf0133, 2023 05 26.
Article En | MEDLINE | ID: mdl-37235663

Idiopathic pulmonary fibrosis is a progressive fibrotic disease characterized by excessive deposition of (myo)fibroblast produced collagen fibrils in alveolar areas of the lung. Lysyl oxidases (LOXs) have been proposed to be the central enzymes that catalyze the cross-linking of collagen fibers. Here, we report that, while its expression is increased in fibrotic lungs, genetic ablation of LOXL2 only leads to a modest reduction of pathological collagen cross-linking but not fibrosis in the lung. On the other hand, loss of another LOX family member, LOXL4, markedly disrupts pathological collagen cross-linking and fibrosis in the lung. Furthermore, knockout of both Loxl2 and Loxl4 does not offer any additive antifibrotic effects when compared to Loxl4 deletion only, as LOXL4 deficiency decreases the expression of other LOX family members including Loxl2. On the basis of these results, we propose that LOXL4 is the main LOX activity underlying pathological collagen cross-linking and lung fibrosis.


Collagen , Idiopathic Pulmonary Fibrosis , Humans , Collagen/metabolism , Lung/metabolism , Fibrosis , Extracellular Matrix/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism
2.
Eur Respir J ; 61(4)2023 04.
Article En | MEDLINE | ID: mdl-36585256

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease characterised by aberrant fibroblast/myofibroblast accumulation and excessive collagen matrix deposition in the alveolar areas of lungs. As the first approved IPF medication, pirfenidone (PFD) significantly decelerates lung function decline while its underlying anti-fibrotic mechanism remains elusive. METHODS: We performed transcriptomic and immunofluorescence analyses of primary human IPF tissues. RESULTS: We showed that myocardin-related transcription factor (MRTF) signalling is activated in myofibroblasts accumulated in IPF lungs. Furthermore, we showed that PFD inhibits MRTF activation in primary human lung fibroblasts at clinically achievable concentrations (half-maximal inhibitory concentration 50-150 µM, maximal inhibition >90%, maximal concentration of PFD in patients <100 µM). Mechanistically, PFD appears to exert its inhibitory effects by promoting the interaction between MRTF and actin indirectly. Finally, PFD-treated IPF lungs exhibit significantly less MRTF activation in fibroblast foci areas than naïve IPF lungs. CONCLUSIONS: Our results suggest MRTF signalling as a direct target for PFD and implicate that some of the anti-fibrotic effects of PFD may be due to MRTF inhibition in lung fibroblasts.


Idiopathic Pulmonary Fibrosis , Transcription Factors , Humans , Fibrosis , Trans-Activators/pharmacology , Lung/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Fibroblasts , Myofibroblasts
3.
Cell Metab ; 34(9): 1377-1393.e8, 2022 09 06.
Article En | MEDLINE | ID: mdl-35987202

Fibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility. In mice, WISP1 deficiency protects against fibrosis progression, but not fibrosis onset. Moreover, the therapeutic administration of a novel antibody blocking WISP1 halted the progression of existing liver fibrosis in NASH models. These findings implicate the WISP1-MRTF axis as a crucial determinant of liver fibrosis progression and support targeting this pathway by antibody-based therapy for the treatment of NASH fibrosis.


Non-alcoholic Fatty Liver Disease , Transcription Factors , Animals , Liver/metabolism , Liver Cirrhosis/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Nuclear Proteins , Signal Transduction , Trans-Activators , Transcription Factors/metabolism
4.
Sci Rep ; 12(1): 5466, 2022 03 31.
Article En | MEDLINE | ID: mdl-35361882

Bone morphogenetic protein 1 (BMP1) belongs to the astacin/BMP1/tolloid-like family of zinc metalloproteinases, which play a fundamental role in the development and formation of extracellular matrix (ECM). BMP1 mediates the cleavage of carboxyl terminal (C-term) propeptides from procollagens, a crucial step in fibrillar collagen fiber formation. Blocking BMP1 by small molecule or antibody inhibitors has been linked to anti-fibrotic activity in the preclinical models of skin, kidney and liver fibrosis. Therefore, we reason that BMP1 may be important for the pathogenesis of lung fibrosis and BMP1 could be a potential therapeutic target for progressive fibrotic disease such as idiopathic pulmonary fibrosis (IPF). Here, we observed the increased expression of BMP1 in both human IPF lungs and mouse fibrotic lungs induced by bleomycin. Furthermore, we developed an inducible Bmp1 conditional knockout (cKO) mouse strain. We found that Bmp1 deletion does not protect mice from lung fibrosis triggered by bleomycin. Moreover, we found no significant impact of BMP1 deficiency upon C-term propeptide of type I procollagen (CICP) production in the fibrotic mouse lungs. Based on these results, we propose that BMP1 is not required for lung fibrosis in mice and BMP1 may not be considered a candidate therapeutic target for IPF.


Bone Morphogenetic Protein 1 , Idiopathic Pulmonary Fibrosis , Animals , Bleomycin/metabolism , Bone Morphogenetic Protein 1/genetics , Bone Morphogenetic Protein 1/metabolism , Extracellular Matrix/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Mice , Procollagen/genetics
5.
Cell Rep ; 36(1): 109309, 2021 07 06.
Article En | MEDLINE | ID: mdl-34233193

αvß8 integrin, a key activator of transforming growth factor ß (TGF-ß), inhibits anti-tumor immunity. We show that a potent blocking monoclonal antibody against αvß8 (ADWA-11) causes growth suppression or complete regression in syngeneic models of squamous cell carcinoma, mammary cancer, colon cancer, and prostate cancer, especially when combined with other immunomodulators or radiotherapy. αvß8 is expressed at the highest levels in CD4+CD25+ T cells in tumors, and specific deletion of ß8 from T cells is as effective as ADWA-11 in suppressing tumor growth. ADWA-11 increases expression of a suite of genes in tumor-infiltrating CD8+ T cells normally inhibited by TGF-ß and involved in tumor cell killing, including granzyme B and interferon-γ. The in vitro cytotoxic effect of tumor CD8 T cells is inhibited by CD4+CD25+ cells, and this suppressive effect is blocked by ADWA-11. These findings solidify αvß8 integrin as a promising target for cancer immunotherapy.


Immunity , Immunotherapy , Integrins/metabolism , Models, Biological , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , Antibodies, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Granzymes/metabolism , Interferon-gamma/metabolism , Lymphocyte Depletion , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction , Smad3 Protein/metabolism , Survival Analysis , T-Lymphocytes, Cytotoxic/immunology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
6.
Sci Transl Med ; 12(557)2020 08 19.
Article En | MEDLINE | ID: mdl-32817366

Hepatic stellate cells (HSCs) drive hepatic fibrosis. Therapies that inactivate HSCs have clinical potential as antifibrotic agents. We previously identified acid ceramidase (aCDase) as an antifibrotic target. We showed that tricyclic antidepressants (TCAs) reduce hepatic fibrosis by inhibiting aCDase and increasing the bioactive sphingolipid ceramide. We now demonstrate that targeting aCDase inhibits YAP/TAZ activity by potentiating its phosphorylation-mediated proteasomal degradation via the ubiquitin ligase adaptor protein ß-TrCP. In mouse models of fibrosis, pharmacologic inhibition of aCDase or genetic knockout of aCDase in HSCs reduces fibrosis, stromal stiffness, and YAP/TAZ activity. In patients with advanced fibrosis, aCDase expression in HSCs is increased. Consistently, a signature of the genes most down-regulated by ceramide identifies patients with advanced fibrosis who could benefit from aCDase targeting. The findings implicate ceramide as a critical regulator of YAP/TAZ signaling and HSC activation and highlight aCDase as a therapeutic target for the treatment of fibrosis.


Acid Ceramidase , Hepatic Stellate Cells , Adaptor Proteins, Signal Transducing/metabolism , Animals , Fibrosis , Hepatic Stellate Cells/metabolism , Humans , Mice , Signal Transduction
7.
JCI Insight ; 5(3)2020 02 13.
Article En | MEDLINE | ID: mdl-32051339

Chronic alcohol abuse has a detrimental effect on the brain and liver. There is no effective treatment for these patients, and the mechanism underlying alcohol addiction and consequent alcohol-induced damage of the liver/brain axis remains unresolved. We compared experimental models of alcoholic liver disease (ALD) and alcohol dependence in mice and demonstrated that genetic ablation of IL-17 receptor A (IL-17ra-/-) or pharmacological blockade of IL-17 signaling effectively suppressed the increased voluntary alcohol drinking in alcohol-dependent mice and blocked alcohol-induced hepatocellular and neurological damage. The level of circulating IL-17A positively correlated with the alcohol use in excessive drinkers and was further increased in patients with ALD as compared with healthy individuals. Our data suggest that IL-17A is a common mediator of excessive alcohol consumption and alcohol-induced liver/brain injury, and targeting IL-17A may provide a novel strategy for treatment of alcohol-induced pathology.


Alcohol Drinking , Interleukin-17/blood , Liver Diseases, Alcoholic/prevention & control , Signal Transduction/drug effects , Animals , Astrocytes/immunology , Ethanol/administration & dosage , Humans , Interleukin-17/immunology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors
8.
Gastroenterology ; 158(6): 1728-1744.e14, 2020 05.
Article En | MEDLINE | ID: mdl-31982409

BACKGROUND & AIMS: Development of liver fibrosis is associated with activation of quiescent hepatic stellate cells (HSCs) into collagen type I-producing myofibroblasts (activated HSCs). Cessation of liver injury often results in fibrosis resolution and inactivation of activated HSCs/myofibroblasts into a quiescent-like state (inactivated HSCs). We aimed to identify molecular features of phenotypes of HSCs from mice and humans. METHODS: We performed studies with LratCre, Ets1-floxed, Nf1-floxed, Pparγ-floxed, Gata6-floxed, Rag2-/-γc-/-, and C57/Bl6 (control) mice. Some mice were given carbon tetrachloride (CCl4) to induce liver fibrosis, with or without a peroxisome proliferator-activated receptor-γ (PPARγ) agonist. Livers from mice were analyzed by immunohistochemistry. Quiescent, activated, and inactivated HSCs were isolated from livers of Col1α1YFP mice and analyzed by chromatin immunoprecipitation and sequencing. Human HSCs were isolated from livers denied for transplantation. We compared changes in gene expression patterns and epigenetic modifications (histone H3 lysine 4 dimethylation and histone H3 lysine 27 acetylation) in primary mouse and human HSCs. Transcription factors were knocked down with small hairpin RNAs in mouse HSCs. RESULTS: Motif enrichment identified E26 transcription-specific transcription factors (ETS) 1, ETS2, GATA4, GATA6, interferon regulatory factor (IRF) 1, and IRF2 transcription factors as regulators of the mouse and human HSC lineage. Small hairpin RNA-knockdown of these transcription factors resulted in increased expression of genes that promote fibrogenesis and inflammation, and loss of HSC phenotype. Disruption of Gata6 or Ets1, or Nf1 or Pparγ (which are regulated by ETS1), increased the severity of CCl4-induced liver fibrosis in mice compared to control mice. Only mice with disruption of Gata6 or Pparγ had defects in fibrosis resolution after CCl4 administration was stopped, associated with persistent activation of HSCs. Administration of a PPARγ agonist accelerated regression of liver fibrosis after CCl4 administration in control mice but not in mice with disruption of Pparγ. CONCLUSIONS: Phenotypes of HSCs from humans and mice are regulated by transcription factors, including ETS1, ETS2, GATA4, GATA6, IRF1, and IRF2. Activated mouse and human HSCs can revert to a quiescent-like, inactivated phenotype. We found GATA6 and PPARγ to be required for inactivation of human HSCs and regression of liver fibrosis in mice.


GATA6 Transcription Factor/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis, Experimental/pathology , Proto-Oncogene Protein c-ets-1/metabolism , Animals , Carbon Tetrachloride/toxicity , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , GATA6 Transcription Factor/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Hepatic Stellate Cells/drug effects , Humans , Liver Cirrhosis, Experimental/chemically induced , Mice , Mice, Transgenic , Myofibroblasts/pathology , PPAR gamma/agonists , PPAR gamma/genetics , Primary Cell Culture , Proto-Oncogene Protein c-ets-1/genetics
9.
J Hepatol ; 72(5): 946-959, 2020 05.
Article En | MEDLINE | ID: mdl-31899206

BACKGROUND & AIMS: Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA. METHODS: Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens. RESULTS: We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra-/- and major urinary protein-urokinase-type plasminogen activator/Il-17ra-/- mice compared with wild-type mice. When the cell-specific role of IL-17RA signaling was examined, the development of HCC was decreased in both alcohol-fed Il-17raΔMΦ and Il-17raΔHep mice devoid of IL-17RA in myeloid cells and hepatocytes, but not in Il-17raΔHSC mice (deficient in IL-17RA in hepatic stellate cells). Deletion of Il-17ra in myeloid cells ameliorated tumorigenesis via suppression of pro-tumorigenic/inflammatory and pro-fibrogenic responses in alcohol-fed Il-17raΔMΦ mice. Remarkably, despite a normal inflammatory response, alcohol-fed Il-17raΔHep mice developed the fewest tumors (compared with Il-17raΔMΦ mice), with reduced steatosis and fibrosis. Steatotic IL-17RA-deficient hepatocytes downregulated the expression of Cxcl1 and other chemokines, exhibited a striking defect in tumor necrosis factor (TNF)/TNF receptor 1-dependent caspase-2-SREBP1/2-DHCR7-mediated cholesterol synthesis, and upregulated the production of antioxidant vitamin D3. The pharmacological blocking of IL-17A/Th-17 cells using anti-IL-12/IL-23 antibodies suppressed the progression of HCC (by 70%) in alcohol-fed mice, indicating that targeting IL-17 signaling might provide novel strategies for the treatment of alcohol-induced HCC. CONCLUSIONS: Overall, IL-17A is a tumor-promoting cytokine, which critically regulates alcohol-induced hepatic steatosis, inflammation, fibrosis, and HCC. LAY SUMMARY: IL-17A is a tumor-promoting cytokine, which critically regulates inflammatory responses in macrophages (Kupffer cells and bone-marrow-derived monocytes) and cholesterol synthesis in steatotic hepatocytes in an experimental model of alcohol-induced HCC. Therefore, IL-17A may be a potential therapeutic target for patients with alcohol-induced HCC.


Carcinoma, Hepatocellular/metabolism , Hepatocytes/metabolism , Interleukin-17/metabolism , Kupffer Cells/metabolism , Liver Cirrhosis/complications , Liver Cirrhosis/metabolism , Liver Diseases, Alcoholic/complications , Liver Diseases, Alcoholic/metabolism , Liver Neoplasms/metabolism , Signal Transduction/genetics , Animals , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Ethanol/adverse effects , Gene Deletion , Humans , Liver Cirrhosis/pathology , Liver Diseases, Alcoholic/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/genetics , Transcriptome
10.
J Hepatol ; 71(3): 573-585, 2019 09.
Article En | MEDLINE | ID: mdl-31071368

BACKGROUND & AIMS: Chronic liver injury often results in the activation of hepatic myofibroblasts and the development of liver fibrosis. Hepatic myofibroblasts may originate from 3 major sources: hepatic stellate cells (HSCs), portal fibroblasts (PFs), and fibrocytes, with varying contributions depending on the etiology of liver injury. Here, we assessed the composition of hepatic myofibroblasts in multidrug resistance gene 2 knockout (Mdr2-/-) mice, a genetic model that resembles primary sclerosing cholangitis in patients. METHODS: Mdr2-/- mice expressing a collagen-GFP reporter were analyzed at different ages. Hepatic non-parenchymal cells isolated from collagen-GFP Mdr2-/- mice were sorted based on collagen-GFP and vitamin A. An NADPH oxidase (NOX) 1/4 inhibitor was administrated to Mdr2-/- mice aged 12-16 weeks old to assess the therapeutic approach of targeting oxidative stress in cholestatic injury. RESULTS: Thy1+ activated PFs accounted for 26%, 51%, and 54% of collagen-GFP+ myofibroblasts in Mdr2-/- mice at 4, 8, and 16 weeks of age, respectively. The remaining collagen-GFP+ myofibroblasts were composed of activated HSCs, suggesting that PFs and HSCs are both activated in Mdr2-/- mice. Bone-marrow-derived fibrocytes minimally contributed to liver fibrosis in Mdr2-/- mice. The development of cholestatic liver fibrosis in Mdr2-/- mice was associated with early recruitment of Gr1+ myeloid cells and upregulation of pro-inflammatory cytokines (4 weeks). Administration of a NOX inhibitor to 12-week-old Mdr2-/- mice suppressed the activation of myofibroblasts and attenuated the development of cholestatic fibrosis. CONCLUSIONS: Activated PFs and activated HSCs contribute to cholestatic fibrosis in Mdr2-/- mice, and serve as targets for antifibrotic therapy. LAY SUMMARY: Activated portal fibroblasts and hepatic stellate cells, but not fibrocytes, contributed to the production of the fibrous scar in livers of Mdr2-/- mice, and these cells can serve as targets for antifibrotic therapy in cholestatic injury. Therapeutic inhibition of the enzyme NADPH oxidase (NOX) in Mdr2-/- mice reversed cholestatic fibrosis, suggesting that targeting NOXs may be an effective strategy for the treatment of cholestatic fibrosis.


ATP Binding Cassette Transporter, Subfamily B/genetics , Fibroblasts/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis, Biliary/metabolism , Portal Vein/pathology , Animals , Cells, Cultured , Disease Models, Animal , Gene Knockout Techniques , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Biliary/drug therapy , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Myofibroblasts/drug effects , Myofibroblasts/metabolism , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrazolones , Pyridines/pharmacology , Pyridines/therapeutic use , Pyridones , ATP-Binding Cassette Sub-Family B Member 4
11.
Gastroenterology ; 156(4): 1156-1172.e6, 2019 03.
Article En | MEDLINE | ID: mdl-30445007

BACKGROUND & AIMS: Although there are associations among oxidative stress, reduced nicotinamide adenine dinucleotide phosphate oxidase (NOX) activation, and hepatocellular carcinoma (HCC) development, it is not clear how NOX contributes to hepatocarcinogenesis. We studied the functions of different NOX proteins in mice after administration of a liver carcinogen. METHODS: Fourteen-day-old Nox1-/- mice, Nox4-/- mice, Nox1-/-Nox4-/- (double-knockout) mice, and wild-type (WT) C57BL/6 mice were given a single intraperitoneal injection of diethylnitrosamine (DEN) and liver tumors were examined at 9 months. We also studied the effects of DEN in mice with disruption of Nox1 specifically in hepatocytes (Nox1ΔHep), hepatic stellate cells (Nox1ΔHep), or macrophages (Nox1ΔMac). Some mice were also given injections of the NOX1-specific inhibitor ML171. To study the acute effects of DEN, 8-12-week-old mice were given a single intraperitoneal injection, and liver and serum were collected at 72 hours. Liver tissues were analyzed by histologic examination, quantitative polymerase chain reaction, and immunoblots. Hepatocytes and macrophages were isolated from WT and knockout mice and analyzed by immunoblots. RESULTS: Nox4-/- mice and WT mice developed liver tumors within 9 months after administration of DEN, whereas Nox1-/- mice developed 80% fewer tumors, which were 50% smaller than those of WT mice. Nox1ΔHep and Nox1ΔHSC mice developed liver tumors of the same number and size as WT mice, whereas Nox1ΔMac developed fewer and smaller tumors, similar to Nox1-/- mice. After DEN injection, levels of tumor necrosis factor, interleukin 6 (IL6), and phosphorylated signal transducer and activator of transcription 3 were increased in livers from WT, but not Nox1-/- or Nox1ΔMac, mice. Conditioned medium from necrotic hepatocytes induced expression of NOX1 in cultured macrophages, followed by expression of tumor necrosis factor, IL6, and other inflammatory cytokines; this medium did not induce expression of IL6 or cytokines in Nox1ΔMac macrophages. WT mice given DEN followed by ML171 developed fewer and smaller liver tumors than mice given DEN followed by vehicle. CONCLUSIONS: In mice given injections of a liver carcinogen (DEN), expression of NOX1 by macrophages promotes hepatic tumorigenesis by inducing the production of inflammatory cytokines. We propose that upon liver injury, damage-associated molecular patterns released from dying hepatocytes activate liver macrophages to produce cytokines that promote tumor development. Strategies to block NOX1 or these cytokines might be developed to slow hepatocellular carcinoma progression.


Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/genetics , Hepatitis/genetics , Hepatocytes/pathology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Macrophages/enzymology , NADPH Oxidase 1/genetics , NADPH Oxidase 4/genetics , Alarmins/metabolism , Animals , Carcinoma, Hepatocellular/chemically induced , Cell Proliferation/physiology , Cells, Cultured , Culture Media, Conditioned/pharmacology , Diethylnitrosamine , Enzyme Inhibitors/pharmacology , Hepatic Stellate Cells , Hepatocytes/physiology , Humans , Interleukin-6/metabolism , Liver/metabolism , Liver/pathology , Liver Neoplasms, Experimental/chemically induced , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 1/metabolism , Necrosis , STAT3 Transcription Factor/metabolism , Tumor Burden , Tumor Necrosis Factor-alpha/metabolism
12.
Sci Rep ; 8(1): 7670, 2018 05 16.
Article En | MEDLINE | ID: mdl-29769607

Skeletal muscle in the forelimb develops during embryonic and fetal development and perinatally. While much is known regarding the molecules involved in forelimb myogenesis, little is known about the specific mechanisms and interactions. Migrating skeletal muscle precursor cells express Pax3 as they migrate into the forelimb from the dermomyotome. To compare gene expression profiles of the same cell population over time, we isolated lineage-traced Pax3+ cells (Pax3 EGFP ) from forelimbs at different embryonic days. We performed whole transcriptome profiling via RNA-Seq of Pax3+ cells to construct gene networks involved in different stages of embryonic and fetal development. With this, we identified genes involved in the skeletal, muscular, vascular, nervous and immune systems. Expression of genes related to the immune, skeletal and vascular systems showed prominent increases over time, suggesting a non-skeletal myogenic context of Pax3-derived cells. Using co-expression analysis, we observed an immune-related gene subnetwork active during fetal myogenesis, further implying that Pax3-derived cells are not a strictly myogenic lineage, and are involved in patterning and three-dimensional formation of the forelimb through multiple systems.


Cell Lineage/genetics , Embryo, Mammalian/cytology , Forelimb/embryology , Gene Expression Regulation, Developmental , Muscle Proteins/genetics , Muscle, Skeletal/cytology , PAX3 Transcription Factor/metabolism , Animals , Cell Differentiation , Cells, Cultured , Embryo, Mammalian/metabolism , Female , Forelimb/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Mice , Mice, Inbred ICR , Muscle Development/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , PAX3 Transcription Factor/genetics
13.
Hepatol Commun ; 1(10): 1043-1057, 2017 12.
Article En | MEDLINE | ID: mdl-29404441

Cytochrome P450 2E1 (CYP2E1) plays an important role in alcohol and toxin metabolism by catalyzing the conversion of substrates into more polar metabolites and producing reactive oxygen species. Reactive oxygen species-induced oxidative stress promotes hepatocyte injury and death, which in turn induces inflammation, activation of hepatic stellate cells, and liver fibrosis. Here, we analyzed mice expressing only the human CYP2E1 gene (hCYP2E1) to determine differences in hCYP2E1 versus endogenous mouse Cyp2e1 function with different liver injuries. After intragastric alcohol feeding, CYP2E1 expression was induced in both hCYP2E1 and wild-type (Wt) mice. hCYP2E1 mice had greater inflammation, fibrosis, and lipid peroxidation but less hepatic steatosis. In addition, hCYP2E1 mice demonstrated increased expression of fibrogenic and proinflammatory genes but decreased expression of de novo lipogenic genes compared to Wt mice. Lipidomics of free fatty acid, triacylglycerol, diacylglycerol, and cholesterol ester species and proinflammatory prostaglandins support these conclusions. Carbon tetrachloride-induced injury suppressed expression of both mouse and human CYP2E1, but again hCYP2E1 mice exhibited greater hepatic stellate cell activation and fibrosis than Wt controls with comparable expression of proinflammatory genes. By contrast, 14-day bile duct ligation induced comparable cholestatic injury and fibrosis in both genotypes. Conclusion: Alcohol-induced liver fibrosis but not hepatic steatosis is more severe in the hCYP2E1 mouse than in the Wt mouse, demonstrating the use of this model to provide insight into the pathogenesis of alcoholic liver disease. (Hepatology Communications 2017;1:1043-1057).

14.
Age (Dordr) ; 38(4): 291-302, 2016 Aug.
Article En | MEDLINE | ID: mdl-27578257

We aimed to investigate whether aging increases the susceptibility of hepatic and renal inflammation or fibrosis in response to high-fat diet (HFD) and explore the underlying genetic alterations. Middle (10 months old) and old (20 months old) aged, male C57BL/6N mice were fed either a low-fat diet (4 % fat) or HFD (60 % fat) for 4 months. Young (3 months old) aged mice were included as control group. HFD-induced liver and kidney injuries were analyzed by serum and urine assay, histologic staining, immunohistochemistry, and reverse-transcription real-time quantitative polymerase chain reaction. Total RNA sequencing with next-generation technology was done with RNA extracted from liver tissues. With HFD feeding, aged was associated with higher serum alanine aminotransferase levels, marked infiltration of hepatic macrophages, and increased expression of inflammatory cytokines (MCP1, TNF-α, IL-1ß, IL-6, IL-12, IL-17A). Importantly, aged mice showed more advanced hepatic fibrosis and increased expression of fibrogenic markers (Col-I-α1, αSMA, TGF-ß1, TGF-ß2, TGFßRII, PDGF, PDGFRßII, TIMP1) in response to HFD. Aged mice fed on HFD also showed increased oxidative stress and TLR4 expression. In the total RNA seq and gene ontology analysis of liver, old-aged HFD group showed significant up-regulation of genes linked to innate immune response, immune response, defense response, inflammatory response compared to middle-aged HFD group. Meanwhile, aging and HFD feeding showed significant increase in glomerular size and mesangial area, higher urine albumin/creatinine ratio, and advanced renal inflammation or fibrosis. However, the difference of HFD-induced renal injury between old-aged group and middle-aged group was not significant. The susceptibility of hepatic fibrosis as well as hepatic inflammation in response to HFD was significantly increased with aging. In addition, aging was associated with glomerular alterations and increased renal inflammation or fibrosis, while the differential effect of aging on HFD-induced renal injury was not remarkable as shown in the liver.


Aging , Glomerular Mesangium/pathology , Inflammation/pathology , Liver Cirrhosis/pathology , Liver/pathology , Aging/genetics , Aging/metabolism , Aging/pathology , Animals , Biomarkers/blood , Biomarkers/urine , Diet, Fat-Restricted , Diet, High-Fat , Disease Susceptibility , Gene Ontology , Inflammation/genetics , Inflammation/metabolism , Liver Cirrhosis/genetics , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , RNA/genetics , RNA/metabolism , Time Factors , Up-Regulation
15.
Curr Pathobiol Rep ; 4(1): 27-35, 2016 Mar.
Article En | MEDLINE | ID: mdl-27239399

Alcoholic liver disease (ALD) progresses from a normal liver, to steatosis, steatohepatitis, fibrosis and hepatocellular carcinoma (HCC). Despite intensive studies, the pathogenesis of ALD is poorly understood, in part due to a lack of suitable animal models which mimic the stages of ALD progression. Furthermore, the role of IL-17 in ALD has not been evaluated. We and others have recently demonstrated that IL-17 signaling plays a critical role in development of liver fibrosis and cancer. Here we summarize the most recent evidence supporting the role of IL-17 in ALD. As a result of a collaborative effort of Drs. Karin, Gao, Tsukamoto and Kisseleva, we developed several improved models of ALD in mice: 1) chronic-plus-binge model that mimics early stages of steatohepatitis, 2) intragastric ethanol feeding model that mimics alcoholic steatohepatitis and fibrosis, and 3) diethylnitrosamine (DEN)+alcohol model that mimics alcoholic liver cancer. These models might provide new insights into the mechanism of IL-17 signaling in ALD and help identify novel therapeutic targets.

16.
Front Physiol ; 7: 47, 2016.
Article En | MEDLINE | ID: mdl-26909046

Liver fibrosis is a wound-healing process in response to repeated and chronic injury to hepatocytes and/or cholangiocytes. Ongoing hepatocyte apoptosis or necrosis lead to increase in ROS production and decrease in antioxidant activity, which recruits inflammatory cells from the blood and activate hepatic stellate cells (HSCs) changing to myofibroblasts. Injury to cholangiocytes also recruits inflammatory cells to the liver and activates portal fibroblasts in the portal area, which release molecules to activate and amplify cholangiocytes. No matter what origin of myofibroblasts, either HSCs or portal fibroblasts, they share similar characteristics, including being positive for α-smooth muscle actin and producing extracellular matrix. Based on the extensive pathogenesis knowledge of liver fibrosis, therapeutic strategies have been designed to target each step of this process, including hepatocyte apoptosis, cholangiocyte proliferation, inflammation, and activation of myofibroblasts to deposit extracellular matrix, yet the current therapies are still in early-phase clinical development. There is an urgent need to translate the molecular mechanism of liver fibrosis to effective and potent reagents or therapies in human.

17.
Front Pharmacol ; 5: 167, 2014.
Article En | MEDLINE | ID: mdl-25100997

Liver fibrosis results from dysregulation of normal wound healing, inflammation, activation of myofibroblasts, and deposition of extracellular matrix (ECM). Chronic liver injury causes death of hepatocytes and formation of apoptotic bodies, which in turn, release factors that recruit inflammatory cells (neutrophils, monocytes, macrophages, and lymphocytes) to the injured liver. Hepatic macrophages (Kupffer cells) produce TGFß1 and other inflammatory cytokines that activate Collagen Type I producing myofibroblasts, which are not present in the normal liver. Secretion of TGFß1 and activation of myofibroblasts play a critical role in the pathogenesis of liver fibrosis of different etiologies. Although the composition of fibrogenic myofibroblasts varies dependent on etiology of liver injury, liver resident hepatic stellate cells and portal fibroblasts are the major source of myofibroblasts in fibrotic liver in both experimental models of liver fibrosis and in patients with liver disease. Several studies have demonstrated that hepatic fibrosis can reverse upon cessation of liver injury. Regression of liver fibrosis is accompanied by the disappearance of fibrogenic myofibroblasts followed by resorption of the fibrous scar. Myofibroblasts either apoptose or inactivate into a quiescent-like state (e.g., stop collagen production and partially restore expression of lipogenic genes). Resolution of liver fibrosis is associated with recruitment of macrophages that secrete matrix-degrading enzymes (matrix metalloproteinase, collagenases) and are responsible for fibrosis resolution. However, prolonged/repeated liver injury may cause irreversible crosslinking of ECM and formation of uncleavable collagen fibers. Advanced fibrosis progresses to cirrhosis and hepatocellular carcinoma. The current review will summarize the role and contribution of different cell types to populations of fibrogenic myofibroblasts in fibrotic liver.

18.
Dev Dyn ; 242(5): 456-68, 2013 May.
Article En | MEDLINE | ID: mdl-23361844

BACKGROUND: Heart morphogenesis involves sequential anatomical changes from a linear tube of a single channel peristaltic pump to a four-chamber structure with two channels controlled by one-way valves. The developing heart undergoes continuous remodeling, including septation. RESULTS: Pitx2-null mice are characterized by cardiac septational defects of the atria, ventricles, and outflow tract. Pitx2-null mice also exhibited a short outflow tract, including unseptated conus and deformed endocardial cushions. Cushions were characterized with a jelly-like structure, rather than the distinct membrane-looking leaflets, indicating that endothelial mesenchymal transition was impaired in Pitx2(-/-) embryos. Mesoderm cells from the branchial arches and neural crest cells from the otic region contribute to the development of the endocardial cushions, and both were reduced in number. Members of the Fgf and Bmp families exhibited altered expression levels in the mutants. CONCLUSIONS: We suggest that Pitx2 is involved in the cardiac outflow tract septation by promoting and/or maintaining the number and the remodeling process of the mesoderm progenitor cells. Pitx2 influences the expression of transcription factors and signaling molecules involved in the differentiation of the cushion mesenchyme during heart development.


Heart/embryology , Homeodomain Proteins/physiology , Organogenesis/genetics , Transcription Factors/physiology , Animals , Cell Death/genetics , Cell Lineage/genetics , Cell Proliferation , Embryo, Mammalian , Endocardial Cushion Defects/genetics , Endocardial Cushions/embryology , Endocardial Cushions/metabolism , Endocardium/cytology , Endocardium/embryology , Gene Expression Regulation, Developmental , Heart/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Mice , Mice, Knockout , Neural Crest/embryology , Neural Crest/metabolism , Organogenesis/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Homeobox Protein PITX2
19.
Proc Natl Acad Sci U S A ; 109(46): 18839-44, 2012 Nov 13.
Article En | MEDLINE | ID: mdl-23112163

The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.


Body Patterning/physiology , Embryo, Mammalian/embryology , Head/embryology , Heart/embryology , Mesoderm/embryology , Muscle, Skeletal/embryology , Myocardium , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout
20.
PLoS One ; 7(7): e42228, 2012.
Article En | MEDLINE | ID: mdl-22860089

Sequence specific transcription factors (SSTFs) combinatorially define cell types during development by forming recursively linked network kernels. Pitx2 expression begins during gastrulation, together with Hox genes, and becomes localized to the abdominal lateral plate mesoderm (LPM) before the onset of myogenesis in somites. The somatopleure of Pitx2 null embryos begins to grow abnormally outward before muscle regulatory factors (MRFs) or Pitx2 begin expression in the dermomyotome/myotome. Abdominal somites become deformed and stunted as they elongate into the mutant body wall, but maintain normal MRF expression domains. Subsequent loss of abdominal muscles is therefore not due to defects in specification, determination, or commitment of the myogenic lineage. Microarray analysis was used to identify SSTF families whose expression levels change in E10.5 interlimb body wall biopsies. All Hox9-11 paralogs had lower RNA levels in mutants, whereas genes expressed selectively in the hypaxial dermomyotome/myotome and sclerotome had higher RNA levels in mutants. In situ hybridization analyses indicate that Hox gene expression was reduced in parts of the LPM and intermediate mesoderm of mutants. Chromatin occupancy studies conducted on E10.5 interlimb body wall biopsies showed that Pitx2 protein occupied chromatin sites containing conserved bicoid core motifs in the vicinity of Hox 9-11 and MRF genes. Taken together, the data indicate that Pitx2 protein in LPM cells acts, presumably in combination with other SSTFs, to repress gene expression, that are normally expressed in physically adjoining cell types. Pitx2 thereby prevents cells in the interlimb LPM from adopting the stable network kernels that define sclerotomal, dermomyotomal, or myotomal mesenchymal cell types. This mechanism may be viewed either as lineage restriction or specification.


Body Patterning , Homeodomain Proteins/genetics , Mesoderm , Muscle, Skeletal/pathology , Mutation , Transcription Factors/genetics , Animals , Genes, Homeobox , In Situ Hybridization , Mice , Homeobox Protein PITX2
...