Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Ther Sci ; 36(5): 294-302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694003

RESUMEN

[Purpose] To determine the optimal Tuina rolling manipulation parameters for improving peripheral blood circulation and to observe the duration of these effects. [Participants and Methods] A total of 162 healthy males and 20 males with coronary heart disease were recruited, with a mean age of 29.5 ± 6.4 years. The change in blood flow was used as the observation index, and the best combination of parameters was selected using a cyclic orthogonal experiment. We observed changes in rolling manipulation across different time periods and groups. [Results] There were significant interactions between pressure, frequency and duration in the rolling manipulation. The combination mode of 4 kg, 120 repetitions/min and 10 min is the most effective to improve the average blood flow increase rate of popliteal artery. At 15 minutes after manipulation, different degrees of significant increase were observed, but 20 minutes after manipulation, the average blood flow rate returned to the premanipulation level. There was no difference in blood flow rate between healthy males and coronary heart disease patients. [Conclusion] An effective dynamic model of rolling manipulation was constructed. These results contradicted the idea that more pressure and longer continuous manipulation led to stronger effects. The effect of rolling manipulation on improving peripheral circulation can be maintained for 20 minutes.

2.
Clin Cosmet Investig Dermatol ; 16: 2341-2356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663883

RESUMEN

Objective: In this study, we analyzed the differential expression and key signaling pathways of proteins in the skin of guinea pigs with melanin deposition caused by two different modeling methods by utilizing proteomics techniques. Methods: Guinea pig skin melanin deposition models were: (1) induced by ultraviolet (UV) irradiation alone (U group), (2) induced by UV combined with progesterone injection (P group), and guinea pigs treated without any treatment were used as blank group (B group). H&E staining and Masson staining were used to observe the extent of skin damage and melanin deposition in guinea pigs. The differentially expressed proteins (DEPs) in the skin tissues of melanin-deposited guinea pigs were screened by proteomic techniques, the functions of DEPs were analyzed, and a protein-protein interaction network (PPI) was constructed. Results: There was a significant difference in grayscale between the U and P groups of guinea pig skin before and after modeling (P < 0.01). H&E and Masson staining showed that the U and P groups both exhibited incomplete keratinization of the stratum corneum, increased proliferation of epidermal cells with large nuclei and disordered arrangement, neovascularization of the dermis, and increased the number of melanin particles in the epidermis of the U and P groups of guinea pigs compared with the B group. Proteomics analysis showed that there were 171 DEPs between the U and P groups. These DEPs focused on biological processes such as fibrillar collagen trimer, extracellular matrix containing collagen proteins, metalloproteinase activity, and peroxidase activity. Conclusion: The melanin pigmentation model induced solely by UV radiation negatively regulates biological processes such as extracellular matrix and collagen synthesis, while inducing significant skin photoaging. The combination of progesterone injections and UV radiation-induced melanin pigmentation model can cause abnormal protein expression in fatty acid and phospholipid metabolism, possibly being closer to the environment of melasma formation.

3.
Front Cell Neurosci ; 16: 947732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531133

RESUMEN

Seizures in rodent models that are induced by lithium-pilocarpine mimic human seizures in a highly isomorphic manner. The hippocampus is a brain region that generates and spreads seizures. In order to understand the early phases of seizure events occurring in the hippocampus, global protein expression levels in the hippocampus on day 1 and day 3 were analyzed in lithium-pilocarpine induced acute epileptic rat models using a tandem mass tag-based proteomic approach. Our results showed that differentially expressed proteins were likely to be enhanced rather than prohibited in modulating seizure activity on days 1 and 3 in lithium-pilocarpine induced seizure rats. The differentially regulated proteins differed on days 1 and 3 in the seizure rats, indicating that different molecules and pathways are involved in seizure events occurring from day 1 to day 3 following lithium-pilocarpine administration. In regard to subcellular distribution, the results suggest that post-seizure cellular function in the hippocampus is possibly regulated in a differential manner on seizure progression. Gene ontology annotation results showed that, on day 1 following lithium-pilocarpine administration, it is likely necessary to regulate macromolecular complex assembly, and cell death, while on day 3, it may be necessary to modulate protein metabolic process, cytoplasm, and protein binding. Protein metabolic process rather than macromolecular complex assembly and cell death were affected on day 3 following lithium-pilocarpine administration. The extracellular matrix, receptors, and the constitution of plasma membranes were altered most strongly in the development of seizure events. In a KEGG pathway enrichment cluster analysis, the signaling pathways identified were relevant to sustained angiogenesis and evading apoptosis, and complement and coagulation cascades. On day 3, pathways relevant to Huntington's disease, and tumor necrosis factor signaling were most prevalent. These results suggest that seizure events occurring in day 1 modulate macromolecular complex assembly and cell death, and in day 3 modulate biological protein metabolic process. In summary, our study found limited evidence for ongoing seizure events in the hippocampus of lithium-pilocarpine induced animal models; nevertheless, evaluating the global differential expression of proteins and their impacts on bio-function may offer new perspectives for studying epileptogenesis in the future.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35800012

RESUMEN

Objective: To investigate the effects and corresponding mechanisms of total flavonoids (TFL) from Lycium barbarum leaves on photoaged human dermal fibroblasts (HDFs). Methods: Crude TFL was extracted with 70% ethanol, and a Rutin standard curve was drawn using the sodium nitrite-aluminum nitrate-sodium hydroxide colorimetry method to calculate its yield and mass concentration. After that, the photoaging HDFs model was established by UVA combined with 8-MOP. CCK-8 was performed to assess the influence of TFL on the proliferation of HDFs and photoaging HDFs. ß-galactosidase (SA-ß-gal) staining and activity assays were performed to evaluate the activity of SA-ß-gal and the rate of SA-ß-gal-positive cells in HDFs cells. The level of skin ECM proteins and oxidative stress-related substances in HDFs cells of each group was determined by ELISA and biochemical detection, respectively. Apoptosis of HDFs in each group was assessed by flow cytometry. The expressions of MAPK signaling pathway-related proteins in HDFs were detected by western blot. Results: The yield rate of TFL extracted by 70% ethanol was 41.9%, and its purity rate was 34.6%. TFL at 25, 50, and 100 µg/mL was able to greatly promote the proliferation of HDFs. A photoaged HDFs model was successfully constructed by combining UVA irradiation at 9 J/cm2 and 8-MOP at 50 mg/L. TFL treatment could significantly inhibit apoptosis, SA-ß-gal-positive cell staining rate, SA-ß-gal activity, lactate dehydrogenase (LDH) leakage, and malondialdehyde (MDA) content in photoaged HDFs. Further, TFL increased the proliferative activity, superoxide dismutase (SOD) activity, catalase (CAT) activity, type I collagen (Col I), hydroxyproline (HYP), and hyaluronic acid (HA) level of photoaged HDFs in a dose-dependent manner. Additional experiments suggested that TFL played a protective role by downregulating MAPK signaling pathway activity in photoaged HDFs cells. Conclusion: TFL could inhibit oxidative stress and apoptosis, promote cell proliferation and the level of ECM-related component proteins, and participate in antiphotoaging in a concentration-dependent manner. The protective role of TFL in photoaged HDFs might be related to its inhibition of MAPK signaling pathways.

5.
J Cell Mol Med ; 26(16): 4624-4628, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35765710

RESUMEN

Ultraviolet A (UVA) radiation is a major contributor to the pathogenesis of skin photoaging, and the aim of this study was to investigate the effect of Acacetin on skin photoaging in UVA-irradiated mice and human dermal fibroblasts (HDF). Healthy dorsal depilated rats were irradiated with UVA 30 J/cm2 daily, every other day, for 1 month. Acacetin (40, 80 mg kg/day) was coated to the bare skin of the rats' backs 1 h before UVA irradiation. HDF were treated different concentrations of Acacetin (5, 10, 20 µg/ml) and then irradiated with UVA (20 J/cm2 ). Acacetin was found to be effective in ameliorating UVA-induced oxidative stress and cell death. Acacetin also prevented the UVA-induced decrease of SIRT3, reduced the activation of mitogen-activated protein kinases (MAPKs, p-38 and p-JNK) and blocked the down-regulated activation of oxidative stress in matrix metalloproteinases (MMPs). In addition, Acacetin increased the expressions of collagen-promoting proteins (TGF-ß and Smad3). Finally, the SIRT3 inhibitor 3-TYP blocked all protective effects of Acacetin, indicating that the protective effect of Acacetin against UVA photoaging is SIRT3-dependent. Acacetin effectively mitigated photoaging by targeting the promotion of SIRT3, inhibiting the UVA-induced increases in MMPs and pro-inflammatory factors, and promoting TGF-ß and Smad3.


Asunto(s)
Sirtuina 3 , Envejecimiento de la Piel , Enfermedades de la Piel , Animales , Fibroblastos/metabolismo , Flavonas , Humanos , Metaloproteinasas de la Matriz/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sirtuina 3/metabolismo , Piel/patología , Enfermedades de la Piel/patología , Factor de Crecimiento Transformador beta/metabolismo , Rayos Ultravioleta
6.
Front Pharmacol ; 12: 728261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526903

RESUMEN

The aim of this study was to investigate the role of luteolin in the mechanism of ultraviolet radiation B (UVB)-induced photoaging. An in vivo photoaging model was established using UVB irradiation of bare skin on the back of rats, and an in vitro photoaging model was established using UVB irradiation of human dermal fibroblasts (HDF). Skin damage was observed using hematoxylin-eosin (HE) and Masson staining, skin and cellular reactive oxygen species (ROS) levels were detected by DHE and DCF fluorescent probes, mitochondrial membrane potential was detected by JC-1 staining, and protein expressions were detected by immunofluorescence and Western Blot. Results from animal experiments showed that luteolin reduced UVB-induced erythema and wrinkle formation. Results from cellular assays showed that luteolin inhibited UVB-induced decrease in cell viability. In addition, in vitro and in vivo experiments showed that luteolin reduced oxidative stress levels, decreased activation of matrix metalloproteinases (MMPs) and increased collagen expression. Continued cellular experiments using 3-TYP, an inhibitor of Sirtuin 3 (SIRT3), revealed a loss of cellular protection by luteolin and a decrease in collagen, suggesting that luteolin acts by targeting and promoting SIRT3. luteolin is involved in the protection of skin cells against UVB radiation-induced ageing via the SIRT3/ROS/mitogen-activated protein kinases (MAPK) axis and it may be a promising therapeutic agent for the prevention of UVB photoaging.

7.
Sensors (Basel) ; 20(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861924

RESUMEN

Ultra-reliable low-latency communication (URLLC) is one of the three usage scenarios anticipated for 5G, which plays an important role in advanced applications of vehicle-to-everything (V2X) communications. In this paper, the Stackelberg game-based power allocation problem was investigated in V2X communications underlaying cellular networks. Assuming that the macro-cellular base station (MBS) sets the interference prices to protect itself from the V2X users (VUEs), the Stackelberg game was adopted to analyze the interaction between MBS and VUEs, where the former acts as a leader and the latter act as followers. For MBS, we aimed at maximizing its utility from interference revenue while considering the cost of interference. Meanwhile, the VUEs aimed at maximizing their utilities per unit power consumption. We analyzed the Stackelberg model and obtained the optimal prices for MBS and optimal transmit powers for VUEs. Simulation results demonstrated the superiority of the proposed Stackelberg game-based power allocation scheme in comparison with the traditional power allocation strategy. Meanwhile, the proposed scheme achieved a better trade-off between economic profit and power consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA