Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 128
1.
J Cell Mol Med ; 28(11): e18473, 2024 Jun.
Article En | MEDLINE | ID: mdl-38847477

Bladder cancer is one of the most prevalent cancers worldwide, and its morbidity and mortality rates have been increasing over the years. However, how RAC family small GTPase 3 (RAC3) affects the proliferation, migration and invasion of cisplatin-resistant bladder cancer cells remains unclear. Bioinformatics techniques were used to investigate the expression of RAC3 in bladder cancer tissues. Influences of RAC3 in the grade, stage, distant metastasis, and survival rate of bladder cancer were also examined. Analysis of the relationship between RAC3 expression and the immune microenvironment (TIME), genomic mutations, and stemness index. In normal bladder cancer cells (T24, 5637, and BIU-87) and cisplatin-resistant bladder cancer cells (BIU-87-DDP), the expression of RAC3 was detected separately with Western blotting. Plasmid transfection was used to overexpress or silence the expression of RAC3 in bladder cancer cells resistant to cisplatin (BIU-87-DDP). By adding activators and inhibitors, the activities of the JNK/MAPK signalling pathway were altered. Cell viability, invasion, and its level of apoptosis were measured in vitro using CCK-8, transwell, and flow cytometry. The bioinformatics analyses found RAC3 levels were elevated in bladder cancer tissues and were associated with a poor prognosis in bladder cancer. RAC3 in BIU-87-DDP cells expressed a higher level than normal bladder cancer cells. RAC3 overexpression promoted BIU-87-DDP proliferation. The growth of BIU-87-DDP cells slowed after the knockdown of RAC3, and RAC3 may have had an impact on the activation of the JNK/MAPK pathway.


Apoptosis , Cell Movement , Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Urinary Bladder Neoplasms , rac GTP-Binding Proteins , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , rac GTP-Binding Proteins/metabolism , rac GTP-Binding Proteins/genetics , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Female , Male , Middle Aged , Tumor Microenvironment , MAP Kinase Signaling System/drug effects
2.
J Med Imaging (Bellingham) ; 11(3): 034504, 2024 May.
Article En | MEDLINE | ID: mdl-38827779

Purpose: Accurate segmentation of the endometrium in ultrasound images is essential for gynecological diagnostics and treatment planning. Manual segmentation methods are time-consuming and subjective, prompting the exploration of automated solutions. We introduce "segment anything with inception module" (SAIM), a specialized adaptation of the segment anything model, tailored specifically for the segmentation of endometrium structures in ultrasound images. Approach: SAIM incorporates enhancements to the image encoder structure and integrates point prompts to guide the segmentation process. We utilized ultrasound images from patients undergoing hysteroscopic surgery in the gynecological department to train and evaluate the model. Results: Our study demonstrates SAIM's superior segmentation performance through quantitative and qualitative evaluations, surpassing existing automated methods. SAIM achieves a dice similarity coefficient of 76.31% and an intersection over union score of 63.71%, outperforming traditional task-specific deep learning models and other SAM-based foundation models. Conclusions: The proposed SAIM achieves high segmentation accuracy, providing high diagnostic precision and efficiency. Furthermore, it is potentially an efficient tool for junior medical professionals in education and diagnosis.

3.
Environ Sci Technol ; 58(21): 9456-9465, 2024 May 28.
Article En | MEDLINE | ID: mdl-38745405

The elimination of uranium from radioactive wastewater is crucial for the safe management and operation of environmental remediation. Here, we present a layered vanadate with high acid/base stability, [Me2NH2]V3O7, as an excellent ion exchanger capturing uranyl from highly complex aqueous solutions. The material possesses an indirect band gap, ferromagnetic characteristic and a flower-like morphology comprising parallel nanosheets. The layered structure of [Me2NH2]V3O7 is predominantly upheld by the H-bond interaction between anionic framework [V3O7]nn- and intercalated [Me2NH2]+. The [Me2NH2]+ within [Me2NH2]V3O7 can be readily exchanged with UO22+. [Me2NH2]V3O7 exhibits high exchange capacity (qm = 176.19 mg/g), fast kinetics (within 15 min), high removal efficiencies (>99%), and good selectivity against an excess of interfering ions. It also displays activity for UO22+ ion exchange over a wide pH range (2.00-7.12). More importantly, [Me2NH2]V3O7 has the capability to effectively remove low-concentration uranium, yielding a residual U concentration of 13 ppb, which falls below the EPA-defined acceptable limit of 30 ppb in typical drinking water. [Me2NH2]V3O7 can also efficiently separate UO22+ from Cs+ or Sr2+ achieving the highest separation factors (SFU/Cs of 589 and SFU/Sr of 227) to date. The BOMD and DFT calculations reveal that the driving force of ion exchange is dominated by the interaction between UO22+ and [V3O7]nn-, whereas the ion exchange rate is influenced by the mobility of UO22+ and [Me2NH2]+. Our experimental findings indicate that [Me2NH2]V3O7 can be considered as a promising uranium scavenger for environmental remediation. Additionally, the simulation results provide valuable mechanistic interpretations for ion exchange and serve as a reference for designing novel ion exchangers.


Uranium , Vanadates , Uranium/chemistry , Vanadates/chemistry , Ion Exchange , Water Pollutants, Radioactive/chemistry , Kinetics
4.
Anal Methods ; 16(15): 2248-2255, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38568684

Herein, a magnetic bead-based chemiluminescence assay is reported to detect type IV collagen (col-IV) in serum samples. Magnetic beads (MBs) exhibit biocompatibility. Taking advantage of this property, they were conjugated with the col-IV antibody. For the determination of col-IV, the interaction of the col-IV sample, anti-(col-IV)-alkaline phosphatase (anti-(col-IV)-ALP) and anti-col-IV-magnetic beads (anti-(col-IV)-MBs) was performed to generate chemiluminescence. Under the optimized conditions, the developed method displayed good linearity in the concentration range of 20-2000 ng mL-1 with the limit of 0.79 ng mL-1. The repeatability coefficient of variation (CV) for col-IV detection ranged from 3.16% to 7.50%. The col-IV level in samples collected from a hospital was assessed by the chemiluminescence assay. Satisfactory recoveries were obtained ranging from 93.30% to 100.14%. In conclusion, the magnetic bead-based chemiluminescence assay may be used as a routine and efficient tool to detect type IV collagen in clinical diagnosis.


Collagen Type IV , Luminescence , Humans , Fibrosis , Liver Cirrhosis , Immunoassay/methods
5.
Sci Rep ; 14(1): 8195, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589564

Large floating raft vibration isolation systems (FRVISs) based on high-static-low-dynamic stiffness (HSLDS) technology offer excellent low frequency vibration isolation performance with broad application prospects. However, the design process for these complex high-dimensional coupled nonlinear systems remains poorly developed, particularly when applied for ocean-going vessels that experience rolling and pitching motions. The present work addresses this issue by establishing a six-degree-of-freedom HSLDS vibration isolation model for FRVISs composed of eight isolators, and the model is applied to fully analyze the swing stability and multidimensional vibration isolation performance of these systems. The influence of nonlinearity on the mechanical properties of the vibration isolators is analyzed more clearly by assuming that each vibration isolator realizes nonlinear HSLDS characteristics in the z direction and linear characteristics in the x and y directions. The results demonstrate that the swing displacement responses of the system are greatly reduced under weak nonlinearity, which reflects the high static stiffness and high static stability characteristics of an HSLDS system. The multidimensional vibration isolation performance of the system is evaluated according to the impacts of nonlinearity, the installation height Hz of the isolators, and the relative position Dr of the two middle isolators. The results of analysis demonstrate that applying a value of Hz = 0 produces the best vibration isolation performance overall under strong nonlinearity by avoiding unnecessary secondary peaks in the force transmission rate under harmonic mechanical excitation and ensuring a maximum high-frequency vibration isolation effect. However, applying a weak nonlinearity is better than a strong nonlinearity if Hz is not zero. In contrast, Dr has little effect on the vibration isolation effect of the raft in the x, y, and z directions. Therefore, an equidistant installation with Dr = 0.5 would be considered ideal from the standpoint of installation stability.

6.
Sci Total Environ ; 931: 172670, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38679109

The trait-based unidimensional plant economics spectrum provides a valuable framework for understanding plant adaptation strategies to the environment. However, it is still uncertain whether there is a general multidimensionality of how variation of both leaf and fine root traits are influenced by environmental factors, and how these relate to microbial resource strategies. Here, we examined the coordination patterns of four pairs of similar leaf and fine root traits of herbaceous plants in an alpine meadow at the community-level, and their environmental driving patterns. We then assessed their correlation with microbial life-history strategies, as these exhibit analogous resource strategies with plants in terms of growth and resource utilization efficiency. Results exhibited an analogous multidimensionality of the economics spectrum for leaf and fine root traits: the first dimension, collaboration gradient, primarily represented a tradeoff between lifespan and resource foraging efficiency; the second dimension, conservation gradient, primarily represented a tradeoff between conservation and acquisition in resource uptake. Climate variables had a stronger impact on both dimensions for leaf and fine root traits than soil variables did; whereas, the primary drivers were more complex for fine root traits than for leaf traits. The collaboration gradient of leaf and fine root traits exhibited consistent relationships with soil microbial life-history strategies, both showed negative and positive correlation with bacterial and fungal strategies, respectively. Our findings suggest that both leaves and fine roots have general multidimensional strategies for adapting to new environments and provide a solid basis for further understanding the relationships between the adaptive strategies of plants and microbes.


Plant Leaves , Plant Roots , Soil Microbiology , Plant Roots/microbiology , Plants , Grassland , Plant Physiological Phenomena
7.
Neurourol Urodyn ; 43(3): 754-766, 2024 Mar.
Article En | MEDLINE | ID: mdl-38356381

AIMS: To explore the effect of blocking galectin-3 in the bladder pain syndrome associated with interstitial cystitis. METHODS: A galectin-3 inhibitor was used to treat mice with cyclophosphamide-induced cystitis. The expression of galectin-3 in bladder tissues and urine was examined by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), respectively. Suprapubic-pelvic pain, bladder voiding, bladder pain-like nociceptive behavior, and referred hyperalgesia were assessed. The weights of the bladders were also measured, and inflammatory cell infiltration and inflammatory cytokine levels were examined by histopathological evaluation. The inflammatory cytokines interleukin 1ß (IL-1ß), nerve growth factor (NGF), IL-6, and tumor necrosis factor α (TNF-α) were measured by ELISA. RESULTS: Increases in galectin-3 levels, inflammation, bladder weight, and bladder pain-related symptoms were observed in bladders with cyclophosphamide-induced cystitis. Administration of the galectin-3 inhibitor significantly mitigated bladder pain-related symptoms and inflammatory response. In response to the 500 µM dose of the galectin-3 inhibitor, nociceptive behaviors, nociceptive score, and bladder-to-body weight ratios were reduced by 65.1%, 65.3%, and 40.3%, respectively, while 500 µM Gal-3 inhibitor increased pelvic pain threshold by 86.7%. Moreover, galectin-3 inhibitor treatment inhibited the inflammation. Compared to untreated CYP-induced mice, there were significant changes in the levels of IL-1ß (41.72 ± 2.05 vs. 18.91 ± 2.26 pg/mg tissues), NGF (9.64 ± 0.38 vs. 1.88 ± 0.05 pg/mg tissues), IL-6 (42.67 + 1.51 vs. 21.26 + 2.78 pg/mg tissues, and TNF-α (22.02 ± 1.08 vs. 10.70 ± 0.80 pg/mg tissues) in response to the highest dose of the Gal-3 inhibitor subgroup (500 µM), and 500 µM Gal-3 inhibitor reduced mast cell infiltration ratios by 71.8%. CONCLUSIONS: The galectin-3 inhibitor relieved pelvic pain, urinary symptoms, and bladder inflammation in mice with cyclophosphamide-induced cystitis. Thus, galectin-3 inhibitors may be novel agents in interstitial cystitis treatment.


Cystitis, Interstitial , Cystitis , Mice , Animals , Cystitis, Interstitial/chemically induced , Cystitis, Interstitial/drug therapy , Cystitis, Interstitial/metabolism , Galectin 3/adverse effects , Tumor Necrosis Factor-alpha , Interleukin-6 , Nerve Growth Factor , Cystitis/chemically induced , Cystitis/complications , Cystitis/drug therapy , Inflammation/pathology , Cyclophosphamide , Pelvic Pain/chemically induced , Pelvic Pain/drug therapy , Cytokines/metabolism
8.
Ultrasonics ; 138: 107233, 2024 Mar.
Article En | MEDLINE | ID: mdl-38171228

Breast cancer has become the most common cancer worldwide, and early screening improves the patient's survival rate significantly. Although pathology with needle-based biopsy is the gold standard for breast cancer diagnosis, it is invasive, painful, and expensive. Meanwhile it makes patients suffer from misplacement of the needle, resulting in misdiagnosis and further assessment. Ultrasound imaging is non-invasive and real-time, however, benign and malignant tumors are hard to differentiate in grayscale B-mode images. We hypothesis that breast tumors exhibit characteristic properties, which generates distinctive spectral patterns not only in scattering, but also during propagation. In this paper, we propose a breast tumor classification method that evaluates the spectral pattern of the tissues both inside the tumor and beneath it. First, quantitative ultrasonic parameters of these spectral patterns were calculated as the representation of the corresponding tissues. Second, parameters were classified by the K-Nearest Neighbor machine learning model. This method was verified with an open access dataset as a reference, and applied to our own dataset to evaluate the potential for tumors assessment. With both datasets, the proposed method demonstrates accurate classification of the tumors, which potentially makes it unnecessary for certain patients to take the biopsy, reducing the rate of the painful and expensive procedure.


Breast Neoplasms , Humans , Female , Ultrasonography , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast , Biopsy , Biopsy, Needle/methods
9.
Ecotoxicol Environ Saf ; 267: 115657, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37924800

Soil heavy metal contamination and salinity constitute a major environmental problem worldwide. The affected area and impact of these problems are increasing day by day; therefore, it is imperative to restore their potential using environmentally friendly technology. Plant growth-promoting rhizobacteria (PGPR) provides a better option in this context. Thirty-seven bacteria were isolated from the rhizosphere of maize cultivated in metal- and salt-affected soils. Some selected bacterial strains grew well under a wide range of pH (4-10), salt (5-50 g/L), and Cd (50-1000 mg/L) stress. Three bacterial strains, Exiguobacterium aestuarii (UM1), Bacillus cereus (UM8), and Bacillus megaterium (UM35), were selected because of their robust growth and high tolerance to both stress conditions. The bacterial strains UM1, UM8, and UM35 showed P-solubilization, whereas UM8 and UM35 exhibited 1-aminocyclopropane-1-carboxylate deaminase activity and indole acetic acid (IAA) production, respectively. The bacterial strains were inoculated on Brassica juncea plants cultivated in Cd and salt-affected soils due to the above PGP activities and stress tolerance. Plants inoculated with the bacterial strains B. cereus and B. megaterium significantly (p < 0.05) increased shoot fresh weight (17 ± 1.17-29 ± 0.88 g/plant), shoot dry weight (2.50 ± 0.03-4.40 ± 0.32 g/plant), root fresh weight (7.30 ± 0.58-13.30 ± 0.58 g/plant), root dry weight (0.80 ± 0.04-2.00 ± 0.01 g/plant), and shoot K contents (62.76 ± 1.80-105.40 ± 1.15 mg/kg dwt) in normal and stressful conditions. The bacterial strain B. megaterium significantly (p < 0.05) decreased shoot Na+ and Cd++ uptake in single and dual stress conditions. Both bacterial strains, E. aestuarii and B. cereus, efficiently reduced Cd++ translocation and bioaccumulation in the shoot. Bacterial inoculation improved the uptake of K+ and Ca++, while restricted Na+ and Cd++ in B. juncea shoots indicated their potential to mitigate the dual stresses of salt and Cd in B. juncea through ion homeostasis.


Bacillus megaterium , Mustard Plant , Cadmium/toxicity , Plants , Salt Tolerance , Homeostasis , Soil , Soil Microbiology , Plant Roots
10.
Sci Rep ; 13(1): 20412, 2023 11 21.
Article En | MEDLINE | ID: mdl-37989777

TL-895 (formerly known as M7583) is a potent, highly selective, adenosine triphosphate (ATP)-competitive, second-generation, irreversible inhibitor of Bruton's tyrosine kinase (BTK). We characterized its biochemical and cellular effects in in vitro and in vivo models. TL-895 was evaluated preclinically for potency against BTK using IC50 concentration-response curves; selectivity using a 270-kinase panel; BTK phosphorylation in Ramos Burkitt's lymphoma cells by ProteinSimple Wes analysis of one study; anti-proliferative effects in primary chronic lymphocytic leukemia (CLL) blasts; cell viability effects in diffuse large B-cell lymphoma (DLBCL) and mantle-cell lymphoma (MCL) cell lines; effects on antibody-dependent cell-mediated cytotoxicity (ADCC) from Daudi cells and chromium-51 release from human tumor cell lines; and efficacy in vivo using four MCL xenograft model and 21 DLBCL patient-derived xenograft (PDX) models (subtypes: 9 ABC, 11 GCB, 1 Unclassified). TL-895 was active against recombinant BTK (average IC50 1.5 nM) and inhibited only three additional kinases with IC50 within tenfold of BTK activity. TL-895 inhibited BTK auto-phosphorylation at the Y223 phosphorylation site (IC50 1-10 nM). TL-895 inhibited the proliferation of primary CLL blasts in vitro and inhibited growth in a subset of activated DLBCL and MCL cell lines. TL-895 inhibited the ADCC mechanism of therapeutic antibodies only at supra-clinical exposure levels. TL-895 significantly inhibited tumor growth in the Mino MCL xenograft model and in 5/21 DLBCL PDX models relative to vehicle controls. These findings demonstrate the potency of TL-895 for BTK and its efficacy in models of B-cell lymphoma despite its refined selectivity.


Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , B-Lymphocytes/metabolism , Agammaglobulinaemia Tyrosine Kinase , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Lymphoma, Large B-Cell, Diffuse/pathology
11.
J Int Med Res ; 51(10): 3000605231204429, 2023 Oct.
Article En | MEDLINE | ID: mdl-37848343

OBJECTIVE: We aimed to investigate the diagnostic value of different laboratory indicators in combination with total prostate-specific antigen (TPSA) for prostate cancer (PCa). METHODS: In this retrospective study, we selected 291 patients who underwent prostate biopsy. Patients were divided into the benign prostatic hyperplasia group and the PCa group. In both groups, patients were again divided into a group with TPSA 4.0-10.0 ng/mL and a group with TPSA >10.0 ng/mL. Clinical data including age, pre-puncture TPSA, free prostate-specific antigen (FPSA), and prostate volume (PV) were collected from all patients. We calculated the metrics PSA/PV (prostate-specific antigen density, PSAD), age/PV (AVR), age × PV/TPSA (PSA-AV), and (FPSA/TPSA)/PSAD [(F/T)/PSAD]). We plotted receiver operating characteristic (ROC) curves and calculated the area under the ROC curve (AUC). RESULTS: We found statistically significant differences in PV, PSAD, AVR, PSA-AV, and (F/T) PSAD for patients with TPSA 4.0-10.0 ng/mL and TPSA >10 ng/mL. We further plotted the ROC of individual or combined indices in different subgroups and calculated the AUC. We found that the diagnostic efficacy of the combined indices was higher with TPSA >10 ng/mL. CONCLUSION: The combination of TPSA with multiple indicators may improve diagnostic accuracy for PCa.


Prostatic Hyperplasia , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen , Retrospective Studies , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Prostate/pathology , Prostatic Hyperplasia/diagnosis , Prostatic Hyperplasia/pathology , ROC Curve
12.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2153-2160, 2023 Aug.
Article En | MEDLINE | ID: mdl-37681379

To understand the formation process of typical poisonous plant degraded grassland, we studied the cha-racteristics of vegetation and soil during the gradual expansion of Ligularia virgaurea into the native grassland of Qinghai-Tibet Plateau. The results showed that population density, plant height, coverage, and biomass of L. virgaurea increased during the formation of L. virgaurea degraded grassland. In comparison with native grassland, the degraded grassland had higher total aboveground biomass (113.9%), soil total nitrogen concentration (61.0%), NH4+-N (77.9%), organic carbon concentration (45.3%), available phosphorus concentration (78.8%) as well as soil microbial biomass carbon (42.1%) and nitrogen (47.4%), but lower NO3--N (40.1%) and species richness (28.5%) and aboveground biomass (45.7%) of other species beyond L. virgaurea. The extremely strong abilities of interspecific inhibition and morphological plasticity of L. virgaurea, as well as efficient nutrient accumulation and utilization were the keys to its successful expansion, which facilitated the formation of typical L. virgaurea degraded grassland.


Grassland , Ligularia , Carbon , Nitrogen , Soil
13.
Microb Ecol ; 86(4): 2703-2715, 2023 Nov.
Article En | MEDLINE | ID: mdl-37507489

Soil microorganisms play key roles in soil nutrient transformations and have a notable effect on plant growth and health. Different plant genotypes can shape soil microbial patterns via the secretion of root exudates and volatiles, but it is uncertain how a difference in soil microorganisms induced by crop cultivars will respond to short-term seasonal variations. A field experiment was conducted to assess the changes in soil bacterial communities of seven rhizoma peanut (Arachis glabrata Benth, RP) cultivars across two growing seasons, April (Spring season) and October (Fall season). Soils' bacterial communities were targeted using 16S rRNA gene amplicon sequencing. Bacterial community diversity and taxonomic composition among rhizoma peanut cultivars were significantly affected by seasons, cultivars, and their interactions (p < 0.05). Alpha diversity, as estimated by the OTU richness and Simpson index, was around onefold decrease in October than in April across most of the RP cultivars, while the soils from Arblick and Latitude had around one time higher alpha diversity in both seasons compared with other cultivars. Beta diversity differed significantly in April (R = 0.073, p < 0.01) and October (R = 0.084, p < 0.01) across seven cultivars. Bacterial dominant taxa (at phylum and genus level) were strongly affected by seasons and varied towards more dominant groups that have functional potentials involved in nutrient cycling from April to October. A large shift in water availability induced by season variations in addition to host cultivar's effects can explain the observed patterns in diversity, composition, and co-occurrence of bacterial taxa. Overall, our results demonstrate an overriding effect of short-term seasonal variations on soil bacterial communities associated with different crop cultivars. The findings suggest that season-induced shifts in environmental conditions could exert stronger impacts on soil microorganisms than the finer-scale rhizosphere effect from crop cultivars, and consequently influence largely microbe-mediated soil processes and crop health in agricultural ecosystems.


Arachis , Soil , Seasons , Arachis/microbiology , Ecosystem , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Soil Microbiology
14.
PLoS Negl Trop Dis ; 16(10): e0010348, 2022 10.
Article En | MEDLINE | ID: mdl-36251704

Salmonella enterica serovar Typhi (S. Typhi) is either widely distributed or proximally transmitted via fecally-contaminated food or water to cause typhoid fever. In Samoa, where endemic typhoid fever has persisted over decades despite water quality and sanitation improvements, the local patterns of S. Typhi circulation remain unclear. From April 2018-June 2020, epidemiologic data and GPS coordinates were collected during household investigations of 260 acute cases of typhoid fever, and 27 asymptomatic shedders of S. Typhi were detected among household contacts. Spatial and temporal distributions of cases were examined using Average Nearest Neighbor and space-time hotspot analyses. In rural regions, infections occurred in sporadic, focal clusters contrasting with persistent, less clustered cases in the Apia Urban Area. Restrictions to population movement during nationwide lockdowns in 2019-2020 were associated with marked reductions of cases. Phylogenetic analyses of isolates with whole genome sequences (n = 186) revealed one dominant genotype 3.5.4 (n = 181/186) that contains three Samoa-exclusive sub-lineages: 3.5.4.1, 3.5.4.2, and 3.5.4.3. Variables of patient sex, age, and geographic region were examined by phylogenetic groupings, and significant differences (p<0.05) associated genetically-similar isolates in urban areas with working ages (20-49 year olds), and in rural areas with age groups typically at home (<5, 50+). Isolates from asymptomatic shedders were among all three sub-lineages. Whole genome sequencing provided evidence of bacterial genetic similarity, which corroborated 10/12 putative epidemiologic linkages among cases and asymptomatic shedders, as well as 3/3 repeat positives (presumed relapses), with a median of one single nucleotide polymorphism difference. These findings highlight various patterns of typhoid transmission in Samoa that differ between urban and rural regions as well as genomic subtypes. Asymptomatic shedders, detectable only through household investigations, are likely an important reservoir and mobile agent of infection. This study advances a "Samoan S. Typhi framework" that supports current and future typhoid surveillance and control efforts in Samoa.


Typhoid Fever , Humans , Anti-Bacterial Agents/therapeutic use , Genotype , Phylogeny , Salmonella typhi , Typhoid Fever/microbiology , Whole Genome Sequencing , Samoa
15.
Mikrochim Acta ; 189(11): 412, 2022 10 10.
Article En | MEDLINE | ID: mdl-36216990

New insights are proposed into enhancing detection of uranyl ions (UO22+) by electropolymerization brilliant cresyl blue-modified glassy carbon electrode (PBCB/GCE). The mercury-free PBCB/GCE sensor was applied to determine UO22+ in water samples by differential pulse adsorptive stripping voltammetry (DPAdSV). The unique combination of the PBCB/GCE and DPAdSV significantly improves sensitivity due to the polymer of high electroactive area and fast electron transfer rate. The DPAdSV current using a 3 mm diameter PBCB/GCE was proportional to the UO22+ concentration in the range 2.0-90.0 µg·L-1 (- 0.113 V vs. SCE) with a detection limit of 0.650 µg·L-1, RSD = 3.1% (n = 10), and 4.5% reproducibility. In addition, the sensitivity for UO22+ determination was further improved at using an 1 mm diameter PBCB/GCE, which enhances the efficiency of UO22+ deposition due to its higher current density. The 1 mm diameter PBCB/GCE based on DPAdSV technique could be used to determine uranyl ions in the concentration range 0.20-2.0 µg·L-1 (- 0.113 V vs. SCE) with a detection limit of 0.067 µg·L-1, RSD = 5.7 % (n = 10) and 5.4% reproducibility. Hence, the PBCB/GCE is a suitable candidate to substitute the mercury electrode. Graphical abstract.


Carbon , Mercury , Ions , Oxazines , Polymers , Reproducibility of Results , Water
16.
mBio ; 13(5): e0192022, 2022 10 26.
Article En | MEDLINE | ID: mdl-36094088

For decades, the remote island nation of Samoa (population ~200,000) has faced endemic typhoid fever despite improvements in water quality, sanitation, and economic development. We recently described the epidemiology of typhoid fever in Samoa from 2008 to 2019 by person, place, and time; however, the local Salmonella enterica serovar Typhi (S. Typhi) population structure, evolutionary origins, and genomic features remained unknown. Herein, we report whole genome sequence analyses of 306 S. Typhi isolates from Samoa collected between 1983 and 2020. Phylogenetics revealed a dominant population of rare genotypes 3.5.4 and 3.5.3, together comprising 292/306 (95.4%) of Samoan versus 2/4934 (0.04%) global S. Typhi isolates. Three distinct 3.5.4 genomic sublineages were identified, and their defining polymorphisms were determined. These dominant Samoan genotypes, which likely emerged in the 1970s, share ancestry with other 3.5 clade isolates from South America, Southeast Asia, and Oceania. Additionally, a 106-kb pHCM2 phenotypically cryptic plasmid, detected in a 1992 Samoan S. Typhi isolate, was identified in 106/306 (34.6%) of Samoan isolates; this is more than double the observed proportion of pHCM2-containing isolates in the global collection. In stark contrast with global S. Typhi trends, resistance-conferring polymorphisms were detected in only 15/306 (4.9%) of Samoan S. Typhi, indicating overwhelming susceptibility to antibiotics that are no longer effective in most of South and Southeast Asia. This country-level genomic framework can help local health authorities in their ongoing typhoid surveillance and control efforts, as well as fill a critical knowledge gap in S. Typhi genomic data from Oceania. IMPORTANCE In this study, we used whole genome sequencing and comparative genomics analyses to characterize the population structure, evolutionary origins, and genomic features of S. Typhi associated with decades of endemic typhoid fever in Samoa. Our analyses of Samoan isolates from 1983 to 2020 identified a rare S. Typhi population in Samoa that likely emerged around the early 1970s and evolved into sublineages that are presently dominant. The dominance of these endemic genotypes in Samoa is not readily explained by genomic content or widespread acquisition of antimicrobial resistance. These data establish the necessary framework for future genomic surveillance of S. Typhi in Samoa for public health benefit.


Salmonella typhi , Typhoid Fever , Humans , Typhoid Fever/epidemiology , Anti-Bacterial Agents/pharmacology , Genotype , Plasmids , Microbial Sensitivity Tests
17.
Materials (Basel) ; 15(11)2022 May 25.
Article En | MEDLINE | ID: mdl-35683080

The electron beam welding of the tubes and the half-cells for our 1.3 GHz single-cell superconducting radiofrequency (SRF) cavities is complex due to the different thicknesses of the tubes and the half-cells in the iris region. However, the mechanical properties and microstructure of the iris welds in niobium SRF cavities have barely been explored in previous studies. For high-quality iris welds, welding experiments of niobium sheets of 2 mm and 2.8 mm were carried out under different oscillating conditions. The results show that welding with no oscillation or sinusoidal oscillation may not be applied in actual welding owing to the large misalignment of the bottom surface. The weld grains were not significantly refined through beam oscillation. The joints with infinity oscillation had a higher elongation than circular oscillation, which exhibited a brittle fracture in the tensile tests at 77 K. Nevertheless, the texture of the weld with infinity oscillation implies poor formability, so the feasibility of infinity oscillation in actual welding needs verification in future study.

19.
J Fungi (Basel) ; 8(3)2022 Feb 27.
Article En | MEDLINE | ID: mdl-35330239

Fungal endophytes have been extensively found in most terrestrial plants. This type of plant-microorganism symbiosis generates many benefits for plant growth by promoting nutrient availability, uptake, and resistance to environmental disease or stress. Recent studies have reported that fungal endophytes have a potential impact on plant litter decomposition, but the mechanisms behind its effect are not well understood. We proposed a hypothesis that the impacts of fungal endophytes on litter decomposition are not only due to a shift in the symbiont-induced litter quality but a shift in soil microenvironment. To test this hypothesis, we set-up a field trial by planting three locally dominant grass species (wild barley, drunken horse grass, and perennial ryegrass) with Epichloë endophyte-infected (E+) and -free (E-) status, respectively. The aboveground litter and bulk soil from each plant species were collected. The litter quality and the soil biotic and abiotic parameters were analyzed to identify their changes across E+ and E- status and plant species. While Epichloë endophyte status mainly caused a significant shift in soil microenvironment, plant species had a dominant effect on litter quality. Available nitrogen (N) and phosphorus (P) as well as soil organic carbon and microbial biomass in most soils with planting E+ plants increased by 17.19%, 14.28%, 23.82%, and 11.54%, respectively, in comparison to soils with planting E- plants. Our results confirm that fungal endophytes have more of an influence on the soil microenvironment than the aboveground litter quality, providing a partial explanation of the home-field advantage of litter decomposition.

20.
Aging Dis ; 13(1): 246-266, 2022 Feb.
Article En | MEDLINE | ID: mdl-35111372

Blood vessels are one of the most essential organs, which nourish all tissues in our body. Once there are intravascular plaques or vascular occlusion, other organs and circulatory systems will not work properly. Therefore, it is necessary to detect abnormal blood vessels by intravascular imaging technologies for subsequent vascular treatment. The emergence of lasers and fiber optics promotes the development of intravascular imaging and treatment. Laser imaging techniques can obtain deep vascular images owing to light scattering and absorption properties. Moreover, photothermal and photomechanical effects of laser make it possible to treat vascular diseases accurately. In this review, we present the research progress and applications of laser techniques in intravascular imaging and treatment. Firstly, we introduce intravascular optical coherent tomography and intravascular photoacoustic imaging, which can obtain various information of plaques. Multimodal intravascular imaging techniques provide more information about intravascular plaques, which have an essential influence on intravascular imaging. Secondly, two laser techniques including laser angioplasty and endovenous laser ablation are discussed for the treatment of arterial and venous diseases, respectively. Finally, the outlook of laser techniques in blood vessels, as well as the integration of laser imaging and treatment are prospected in the section of discussions.

...