Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nature ; 627(8002): 67-72, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448698

RESUMEN

Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description. A common feature is strong interactions between electrons relative to their kinetic energies. One route to this regime is special lattices to reduce the electron kinetic energies. Twisted bilayer graphene1-4 is an example, and trihexagonal tiling lattices (triangular 'kagome'), with all corner sites removed on a 2 × 2 superlattice, can also host narrow electron bands5 for which interaction effects would be enhanced. Here we describe spectroscopy revealing non-Fermi-liquid behaviour for the ferromagnetic kagome metal Fe3Sn2 (ref. 6). We discover three C3-symmetric electron pockets at the Brillouin zone centre, two of which are expected from density functional theory. The third and most sharply defined band emerges at low temperatures and binding energies by means of fractionalization of one of the other two, most likely on the account of enhanced electron-electron interactions owing to a flat band predicted to lie just above the Fermi level. Our discovery opens the topic of how such many-body physics involving flat bands7,8 could differ depending on whether they arise from lattice geometry or from strongly localized atomic orbitals9,10.

3.
Nat Commun ; 15(1): 1658, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395887

RESUMEN

Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention, yet their origin remains a topic of debate. The discovery of ScV6Sn6, a bilayer kagome metal featuring an intriguing [Formula: see text] CDW order, offers a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering and density functional theory to investigate the electronic structure and phonon modes of ScV6Sn6. We identify topologically nontrivial surface states and multiple van Hove singularities (VHSs) in the vicinity of the Fermi level, with one VHS aligning with the in-plane component of the CDW vector near the [Formula: see text] point. Additionally, Raman measurements indicate a strong electron-phonon coupling, as evidenced by a two-phonon mode and new emergent modes. Our findings highlight the fundamental role of lattice degrees of freedom in promoting the CDW in ScV6Sn6.

4.
Sci Bull (Beijing) ; 67(5): 495-500, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36546170

RESUMEN

Exotic quantum phenomena may appear in material systems with multiple orders or phases, where the mutual interactions can give rise to new physics beyond that of each component. Here, we report spectroscopic evidence for a unique combination of topology and correlation effects in the kagome superconductor CsV3Sb5. Topologically nontrivial surface states are observed near the Fermi energy (EF), indicating that the topological physics may be active upon entering the superconducting state. Flat bands are observed, suggesting that electron correlation effects are also at play in this system. Our results reveal the peculiar electronic structure of CsV3Sb5, which holds the potential for realizing Majorana zero modes and anomalous superconducting states in kagome lattices. They also establish CsV3Sb5 as a unique platform for exploring the interactions between the charge order, topology, correlation effects and superconductivity.

5.
Sci Adv ; 8(43): eabq6589, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306356

RESUMEN

Crystalline symmetry is a defining factor of the electronic band topology in solids, where many-body interactions often induce a spontaneous breaking of symmetry. Superconductors lacking an inversion center are among the best systems to study such effects or even to achieve topological superconductivity. Here, we demonstrate that TRuSi materials (with T a transition metal) belong to this class. Their bulk normal states behave as three-dimensional Kramers nodal-line semimetals, characterized by large antisymmetric spin-orbit couplings and by hourglass-like dispersions. Our muon-spin spectroscopy measurements show that certain TRuSi compounds spontaneously break the time-reversal symmetry at the superconducting transition, while unexpectedly showing a fully gapped superconductivity. Their unconventional behavior is consistent with a unitary (s + ip) pairing, reflecting a mixture of spin singlets and spin triplets. By combining an intrinsic time-reversal symmetry-breaking superconductivity with nontrivial electronic bands, TRuSi compounds provide an ideal platform for investigating the rich interplay between unconventional superconductivity and the exotic properties of Kramers nodal-line/hourglass fermions.

6.
Sci Adv ; 8(38): eadd2024, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36129982

RESUMEN

Transition-metal-based kagome materials at van Hove filling are a rich frontier for the investigation of novel topological electronic states and correlated phenomena. To date, in the idealized two-dimensional kagome lattice, topologically Dirac surface states (TDSSs) have not been unambiguously observed, and the manipulation of TDSSs and van Hove singularities (VHSs) remains largely unexplored. Here, we reveal TDSSs originating from a ℤ2 bulk topology and identify multiple VHSs near the Fermi level (EF) in magnetic kagome material GdV6Sn6. Using in situ surface potassium deposition, we successfully realize manipulation of the TDSSs and VHSs. The Dirac point of the TDSSs can be tuned from above to below EF, which reverses the chirality of the spin texture at the Fermi surface. These results establish GdV6Sn6 as a fascinating platform for studying the nontrivial topology, magnetism, and correlation effects native to kagome lattices. They also suggest potential application of spintronic devices based on kagome materials.

7.
Nat Commun ; 13(1): 2220, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468883

RESUMEN

The recently discovered layered kagome metals AV3Sb5 (A = K, Rb, Cs) exhibit diverse correlated phenomena, which are intertwined with a topological electronic structure with multiple van Hove singularities (VHSs) in the vicinity of the Fermi level. As the VHSs with their large density of states enhance correlation effects, it is of crucial importance to determine their nature and properties. Here, we combine polarization-dependent angle-resolved photoemission spectroscopy with density functional theory to directly reveal the sublattice properties of 3d-orbital VHSs in CsV3Sb5. Four VHSs are identified around the M point and three of them are close to the Fermi level, with two having sublattice-pure and one sublattice-mixed nature. Remarkably, the VHS just below the Fermi level displays an extremely flat dispersion along MK, establishing the experimental discovery of higher-order VHS. The characteristic intensity modulation of Dirac cones around K further demonstrates the sublattice interference embedded in the kagome Fermiology. The crucial insights into the electronic structure, revealed by our work, provide a solid starting point for the understanding of the intriguing correlation phenomena in the kagome metals AV3Sb5.

8.
Nat Mater ; 21(4): 423-429, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35190656

RESUMEN

Charge neutrality and their expected itinerant nature makes excitons potential transmitters of information. However, exciton mobility remains inaccessible to traditional optical experiments that only create and detect excitons with negligible momentum. Here, using angle-resolved photoemission spectroscopy, we detect dispersing excitons in the quasi-one-dimensional metallic trichalcogenide, TaSe3. The low density of conduction electrons and the low dimensionality in TaSe3 combined with a polaronic renormalization of the conduction band and the poorly screened interaction between these polarons and photo-induced valence holes leads to various excitonic bound states that we interpret as intrachain and interchain excitons, and possibly trions. The thresholds for the formation of a photo-hole together with an exciton appear as side valence bands with dispersions nearly parallel to the main valence band, but shifted to lower excitation energies. The energy separation between side and main valence bands can be controlled by surface doping, enabling the tuning of certain exciton properties.


Asunto(s)
Electrones
9.
Nat Commun ; 12(1): 2052, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824343

RESUMEN

Topological crystalline insulators (TCIs) are insulating electronic states with nontrivial topology protected by crystalline symmetries. Recently, theory has proposed new classes of TCIs protected by rotation symmetries [Formula: see text], which have surface rotation anomaly evading the fermion doubling theorem, i.e., n instead of 2n Dirac cones on the surface preserving the rotation symmetry. Here, we report the first realization of the [Formula: see text] rotation anomaly in a binary compound SrPb. Our first-principles calculations reveal two massless Dirac fermions protected by the combination of time-reversal symmetry [Formula: see text] and [Formula: see text] on the (010) surface. Using angle-resolved photoemission spectroscopy, we identify two Dirac surface states inside the bulk band gap of SrPb, confirming the [Formula: see text] rotation anomaly in the new classes of TCIs. The findings enrich the classification of topological phases, which pave the way for exploring exotic behavior of the new classes of TCIs.

10.
Sci Bull (Beijing) ; 66(3): 243-249, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654329

RESUMEN

Topological materials and topological phases have recently become a hot topic in condensed matter physics. In this work, we report an In-intercalated transition-metal dichalcogenide InxTaSe2 (named 112 system), a topological nodal-line semimetal in the presence of both charge density wave (CDW) and superconductivity. In the x = 0.58 sample, the 2×3 commensurate CDW (CCDW) and the 2×2 CCDW are observed below 116 and 77 K, respectively. Consistent with theoretical calculations, the spin-orbital coupling gives rise to two twofold-degenerate nodal rings (Weyl rings) connected by drumhead surface states, confirmed by angle-resolved photoemission spectroscopy. Our results suggest that the 2×2 CCDW ordering gaps out one Weyl ring in accordance with the CDW band folding, while the other Weyl ring remains gapless with intact surface states. In addition, superconductivity emerges at 0.91 K, with the upper critical field deviating from the s-wave behavior at low temperature, implying possibly unconventional superconductivity. Therefore, we think this type of the 112 system may possess abundant physical states and offer a platform to investigate the interplay between CDW, nontrivial band topology and superconductivity.

11.
Adv Mater ; 32(14): e1907565, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32091144

RESUMEN

Parity-time symmetry plays an essential role for the formation of Dirac states in Dirac semimetals. So far, all of the experimentally identified topologically nontrivial Dirac semimetals (DSMs) possess both parity and time reversal symmetry. The realization of magnetic topological DSMs remains a major issue in topological material research. Here, combining angle-resolved photoemission spectroscopy with density functional theory calculations, it is ascertained that band inversion induces a topologically nontrivial ground state in EuCd2 As2 . As a result, ideal magnetic Dirac fermions with simplest double cone structure near the Fermi level emerge in the antiferromagnetic (AFM) phase. The magnetic order breaks time reversal symmetry, but preserves inversion symmetry. The double degeneracy of the Dirac bands is protected by a combination of inversion, time-reversal, and an additional translation operation. Moreover, the calculations show that a deviation of the magnetic moments from the c-axis leads to the breaking of C3 rotation symmetry, and thus, a small bandgap opens at the Dirac point in the bulk. In this case, the system hosts a novel state containing three different types of topological insulator: axion insulator, AFM topological crystalline insulator (TCI), and higher order topological insulator. The results provide an enlarged platform for the quest of topological Dirac fermions in a magnetic system.

12.
Phys Rev Lett ; 124(1): 017202, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31976692

RESUMEN

We report the discovery of topological magnetism in the candidate magnetic Weyl semimetal CeAlGe. Using neutron scattering we find this system to host several incommensurate, square-coordinated multi-k[over →] magnetic phases below T_{N}. The topological properties of a phase stable at intermediate magnetic fields parallel to the c axis are suggested by observation of a topological Hall effect. Our findings highlight CeAlGe as an exceptional system for exploiting the interplay between the nontrivial topologies of the magnetization in real space and Weyl nodes in momentum space.

13.
Sci Rep ; 7(1): 8787, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821871

RESUMEN

The angle-resolved photoemission spectra of the superconductor (Ba1-x K x )Fe2As2 have been investigated accounting coherently for spin-orbit coupling, disorder and electron correlation effects in the valence bands combined with final state, matrix element and surface effects. Our results explain the previously obscured origins of all salient features of the ARPES response of this paradigm pnictide compound and reveal the origin of the Lifshitz transition. Comparison of calculated ARPES spectra with the underlying DMFT band structure shows an important impact of final state effects, which result for three-dimensional states in a deviation of the ARPES spectra from the true spectral function. In particular, the apparent effective mass enhancement seen in the ARPES response is not an entirely intrinsic property of the quasiparticle valence bands but may have a significant extrinsic contribution from the photoemission process and thus differ from its true value. Because this effect is more pronounced for low photoexcitation energies, soft-X-ray ARPES delivers more accurate values of the mass enhancement due to a sharp definition of the 3D electron momentum. To demonstrate this effect in addition to the theoretical study, we show here new state of the art soft-X-ray and polarisation dependent ARPES measurments.

14.
Sci Adv ; 3(5): e1602415, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508059

RESUMEN

Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symmetry, where a glide mirror protects exotic surface fermions with hourglass-shaped dispersion. However, an experimental confirmation of this new fermion is missing. Using angle-resolved photoemission spectroscopy, we provide experimental evidence of hourglass fermions on the (010) surface of crystalline KHgSb, whereas the (001) surface has no boundary state, in agreement with first-principles calculations. Our study will stimulate further research activities of topological properties of nonsymmorphic materials.

15.
Phys Rev Lett ; 117(9): 097001, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27610876

RESUMEN

In the studies of iron pnictides, a key question is whether their bad-metal state from which the superconductivity emerges lies in close proximity with a magnetically ordered insulating phase. Recently, it was found that at low temperatures, the heavily Cu-doped NaFe_{1-x}Cu_{x}As (x>0.3) iron pnictide is an insulator with long-range antiferromagnetic order, similar to the parent compound of cuprates but distinct from all other iron pnictides. Using angle-resolved photoemission spectroscopy, we determined the momentum-resolved electronic structure of NaFe_{1-x}Cu_{x}As (x=0.44) and identified that its ground state is a narrow-gap insulator. Combining the experimental results with density functional theory (DFT) and DFT+U calculations, our analysis reveals that the on-site Coulombic (Hubbard) and Hund's coupling energies play crucial roles in the formation of the band gap about the chemical potential. We propose that at finite temperatures, charge carriers are thermally excited from the Cu-As-like valence band into the conduction band, which is of Fe 3d-like character. With increasing temperature, the number of electrons in the conduction band becomes larger and the hopping energy between Fe sites increases, and finally the long-range antiferromagnetic order is destroyed at T>T_{N}. Our study provides a basis for investigating the evolution of the electronic structure of a Mott insulator transforming into a bad metallic phase and eventually forming a superconducting state in iron pnictides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...