Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(33): e202306198, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37369627

RESUMEN

Achieving substantial anisotropic thermal expansion (TE) in solid-state materials is challenging as most materials undergo volumetric expansion upon heating. Here, we describe colossal, anisotropic TE in crystals of an organic compound functionalized with two azo groups. Interestingly, the material exhibits distinct and switchable TE behaviors within different temperature regions. At high temperature, two-dimensional, area zero TE and colossal, positive linear TE (α=211 MK-1 ) are attained due to dynamic motion, while at low temperature, moderate positive TE occurs in all directions. Investigation of the solid-state motion showed the change in enthalpy and entropy are quite different in the two temperature regions and solid-state NMR experiments support motion in the solid. Cycling experiments demonstrate that the solid-state motions and TE behaviors are completely reversible. These results reveal strategies for designing significant anisotropic and switchable behaviors in solid-state materials.

2.
Chem Commun (Camb) ; 59(50): 7779-7782, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37264668

RESUMEN

Salification of the drug trimethoprim with enantiopure D- or L-lactic acid afforded salts with up to five times improved solubility. Both salts are polymorphic and we demonstrate fully reversible interconversion (cycling) between the drug polymorphs using mechanochemistry and slurry methods. We show drug polymorph interconversion requires both solvent contact and mechanical force, revealing strategies for cycling between solid material forms.

3.
J Org Chem ; 87(21): 14953-14956, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36257059

RESUMEN

A convenient, high-yielding, and scalable synthetic approach to the construction of 4'-vinylbenzocrown ethers has been developed, which employs a decarboxylation and cyclization strategy. Using this method, a wide-ranging class of vinylbenzocrown ethers can be efficiently obtained. The identity of the crown ethers was further established using single-crystal X-ray diffraction studies. Two of the vinylbenzocrown ethers crystallize with water, affording infinite supramolecular assemblies containing hydrogen-bonded water molecules.


Asunto(s)
Éteres Corona , Éteres Corona/química , Cristalografía por Rayos X , Ciclización , Agua
4.
J Org Chem ; 87(9): 5976-5986, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35442684

RESUMEN

Asymmetric synthesis of new atropisomerically multilayered chiral targets has been achieved by taking advantage of the strategy of center-to-multilayer chirality and double Suzuki-Miyaura couplings. Diastereomers were readily separated via flash column chromatography and well characterized. Absolute configuration assignment was determined by X-ray structural analysis. Five enantiomerically pure isomers possessing multilayer chirality were assembled utilizing anchors involving electron-rich aromatic connections. An overall yield of 0.69% of the final target with hydroxyl attachment was achieved over 11 steps from commercially available starting materials.


Asunto(s)
Electrones , Estereoisomerismo
5.
Chemistry ; 27(30): 7977, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33931916

RESUMEN

Invited for the cover of this issue is Guigen Li and co-workers at Texas Tech University and Nanjing University. The cover artwork shows that chirality phenomena exists in the universe and in nature, including at micro and molecular levels. Read the full text of the article at 10.1002/chem.202100700.

6.
Chemistry ; 27(30): 8013-8020, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33830589

RESUMEN

The first asymmetric catalytic approach to multilayer 3D chirality has been achieved by using Suzuki-Miyaura cross-couplings. New chiral catalysts were designed and screened under various catalytic systems that proved chiral amide-phosphines to be more efficient ligands than other candidates. The multilayer 3D framework was unambiguously determined by X-ray structural analysis showing a parallel pattern of three layers consisting of top, middle and bottom aromatic rings. The X-ray structure of a catalyst complex, dichloride complex of Pd-phosphine amide, was obtained revealing an interesting asymmetric environment nearby the Pd metal center. Three rings of multilayer 3D products can be readily changed by varying aromatic ring-anchored starting materials. The resulting multilayer products displayed strong luminescence under UV irradiation and strong aggregation-induced emission (AIE). In the future, this work would benefit not only the field of asymmetric synthesis but also materials science, in particular polarized organic electronics, optoelectronics and photovoltaics.

7.
Research (Wash D C) ; 2021: 3565791, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33629070

RESUMEN

Conjugated polymers and oligomers have great potentials in various fields, especially in materials and biological sciences because of their intriguing electronic and optoelectronic properties. In recent years, the through-space conjugation system has emerged as a new assembled pattern of multidimensional polymers. Here, a novel series of structurally condensed multicolumn/multilayer 3D polymers and oligomers have been designed and synthesized through one-pot Suzuki polycondensation (SPC). The intramolecularly stacked arrangement of polymers can be supported by either X-ray structural analysis or computational analysis. In all cases, polymers were obtained with modest to good yields, as determined by GPC and 1H-NMR. MALDI-TOF analysis has proven the speculation of the step-growth process of this polymerization. The computational study of ab initio and DFT calculations based on trimer and pentamer models gives details of the structures and the electronic transition. Experimental results of optical and AIE research confirmed by calculation indicates that the present work would facilitate the research and applications in materials.

8.
Natl Sci Rev ; 7(3): 588-599, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34692078

RESUMEN

The first enantioselective assembly of sandwich-shaped organo molecules has been achieved by conducting dual asymmetric Suzuki-Miyaura couplings and nine other reactions. This work also presents the first fully C-C anchored multi-layer 3D chirality with optically pure enantiomers. As confirmed by X-ray diffraction analysis that this chiral framework is featured by a unique C2 -symmetry in which a nearly parallel fashion consisting of three layers: top, middle and bottom aromatic rings. Unlike the documented planar or axial chirality, the present chirality shows its top and bottom layers restrict each other from free rotation, i.e., this multi-layer 3D chirality would not exist if either top or bottom layer is removed. Nearly all multi-layered compounds showed strong luminescence of different colors under UV irradiation, and several randomly selected samples displayed aggregation-induced emission (AIE) properties. This work is believed to have broad impacts on chemical, medicinal and material sciences including optoelectronic materials in future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA