Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Respir Res ; 24(1): 222, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710230

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) bears high mortality due to unclear pathogenesis and limited therapeutic options. Therefore, identifying novel regulators is required to develop alternative therapeutic strategies. METHODS: The lung fibroblasts from IPF patients and Reticulocalbin 3 (RCN3) fibroblast-selective knockdown mouse model were used to determine the importance of Rcn3 in IPF; the epigenetic analysis and protein interaction assays, including BioID, were used for mechanistic studies. RESULTS: Reticulocalbin 3 (RCN3) upregulation is associated with the fibrotic activation of lung fibroblasts from IPF patients and Rcn3 overexpression blunts the antifibrotic effects of pirfenidone and nintedanib. Moreover, repressing Rcn3 expression in mouse fibroblasts ameliorates bleomycin-induced lung fibrosis and pulmonary dysfunction in vivo. Mechanistically, RCN3 promotes fibroblast activation by maintaining persistent activation of TGFß1 signalling via the TGFß1-RCN3-TGFBR1 positive feedback loop, in which RCN3 upregulated by TGFß1 exposure detains EZH2 (an epigenetic methyltransferase) in the cytoplasm through RCN3-EZH2 interaction, leading to the release of the EZH2-H3K27me3 epigenetic repression of TGFBR1 and the persistent expression of TGFBR1. CONCLUSIONS: These findings introduce a novel regulating mechanism of TGFß1 signalling in fibroblasts and uncover a critical role of the RCN3-mediated loop in lung fibrosis. RCN3 upregulation may cause resistance to IPF treatment and targeting RCN3 could be a novel approach to ameliorate pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Animales , Ratones , Receptor Tipo I de Factor de Crecimiento Transformador beta , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Fibroblastos , Proteínas de Unión al Calcio
2.
Cytokine ; 166: 156188, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37088003

RESUMEN

BACKGROUND: Methylprednisolone (MP) and cyclophosphamide (CTX) combination treatment has shown great benefits in improving pulmonary fibrosis (PF) and high safety. Currently, the mechanism underlying the effects of MP-CTX on improving PF remains unclear. This study determined the effects of MP-CTX combination treatment on the modulation of inflammation, oxidative stress, and T-cell immunity in PF. METHODS: PF rat models were induced by bleomycin stimulation. MP (3 mg/kg) and MP-CTX (MP: 3 mg/kg; CTX: 8 mg/kg) combination were administered in the PF + MP and PF + MP + CTX groups, respectively. Transmission electron microscopy, hematoxylin and eosin staining, Ashcroft score, and Masson trichrome staining were performed to measure lung morphology in PF. Enzyme-linked immunosorbent assay and quantitative polymerase chain reaction assay were performed to quantify inflammatory factors. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) levels were determined using commercial kits. α-Smooth muscle actin (SMA) and collagen I levels were determined using western blotting and immunohistochemistry. The T-cell count was evaluated using flow cytometry. RESULTS: MP-CTX reduced lung injury, collagen deposition, and α-SMA and collagen I levels in a bleomycin-induced PF rat model. Additionally, MP-CTX decreased the levels of MDA and inflammatory factors (tumor necrosis factor-α, interleukin-1ß, and interleukin-6) but increased the activities of SOD and GSH-PX. Furthermore, MP-CTX changed T-cell types in lung tissues, such as increasing CD4+CD25+Foxp3+ cell count. CONCLUSIONS: MP-CTX combination treatment improved the degree of PF by reducing inflammation and oxidative stress and improving T-cell immunity. These findings provide novel insights into the mechanisms underlying the effects of MP-CTX on PF.


Asunto(s)
Fibrosis Pulmonar , Ratas , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Bleomicina/efectos adversos , Metilprednisolona/efectos adversos , Ciclofosfamida , Inflamación , Colágeno , Colágeno Tipo I , Superóxido Dismutasa
3.
Commun Biol ; 6(1): 244, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879097

RESUMEN

Histamine plays pivotal role in normal physiology and dysregulated production of histamine or signaling through histamine receptors (HRH) can promote pathology. Previously, we showed that Bordetella pertussis or pertussis toxin can induce histamine sensitization in laboratory inbred mice and is genetically controlled by Hrh1/HRH1. HRH1 allotypes differ at three amino acid residues with P263-V313-L331 and L263-M313-S331, imparting sensitization and resistance respectively. Unexpectedly, we found several wild-derived inbred strains that carry the resistant HRH1 allotype (L263-M313-S331) but exhibit histamine sensitization. This suggests the existence of a locus modifying pertussis-dependent histamine sensitization. Congenic mapping identified the location of this modifier locus on mouse chromosome 6 within a functional linkage disequilibrium domain encoding multiple loci controlling sensitization to histamine. We utilized interval-specific single-nucleotide polymorphism (SNP) based association testing across laboratory and wild-derived inbred mouse strains and functional prioritization analyses to identify candidate genes for this modifier locus. Atg7, Plxnd1, Tmcc1, Mkrn2, Il17re, Pparg, Lhfpl4, Vgll4, Rho and Syn2 are candidate genes within this modifier locus, which we named Bphse, enhancer of Bordetella pertussis induced histamine sensitization. Taken together, these results identify, using the evolutionarily significant diversity of wild-derived inbred mice, additional genetic mechanisms controlling histamine sensitization.


Asunto(s)
Bordetella pertussis , Histamina , Animales , Ratones , Bordetella pertussis/genética , Toxina del Pertussis , Transducción de Señal , Proteínas del Sistema Complemento , Sitios Genéticos , Glicoproteínas de Membrana , Péptidos y Proteínas de Señalización Intracelular , Ribonucleoproteínas
4.
Yi Chuan ; 43(6): 580-600, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34284989

RESUMEN

Genetic modification technologies can be used for modifying animal genome to express exogenous genes or affect the function of endogenous genes. In animal breeding, genetic modification technologies allow the rapid generation of germplasms with beneficial traits. It includes traditional genetic modification, virus or sperm carrier-mediated genetic modification and nuclease-mediated genome editing, especially the CRISPR/Cas9, one of the artificial nuclease genome editing technologies, have been applied in genome editing in many domestic animals including sheep (Ovis aries). Compared with conventional strategies used for animal breeding, there is great value for sheep breeding improvement by using genome editing technology, which is more effective and timesaving. In this review, we summarize the approaches of genetic modification in sheep and discuss the possibility of molecular design and breeding of sheep by genome editing technologies. We also identify the potential bottlenecks and challenges of these technologies in sheep breeding.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fitomejoramiento , Ovinos/genética , Tecnología
5.
Artículo en Inglés | MEDLINE | ID: mdl-33531801

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD), characterized by irreversible airflow limitation, is a highly prevalent lung disease worldwide and imposes increasing disease burdens globally. Emphysema is one of the primary pathological features contributing to the irreversible decline of pulmonary function in COPD patients, but the pathogenetic mechanisms remain unclear. Reticulocalbin 3 (Rcn3) is an endoplasmic reticulum (ER) lumen protein localized in the secretory pathway of living cells. Rcn3 in type II alveolar epithelial cell (AECIIs) has been reported to play a critical role in regulating perinatal lung development and bleomycin-induced lung injury-repair processes. We hypothesized that Rcn3 deficiency is associated with the development of emphysema during COPD, which is associated with the dysfunction of injury-repair modulated by alveolar epithelial cells. MATERIALS AND METHODS: We examined Rcn3 expression in lung specimens from COPD patients and non-COPD control patients undergoing lung lobectomy or pneumonectomy. Two mouse models of emphysema were established by cigarette smoke (CS) exposure and intratracheal instillation of porcine pancreatic elastase (PPE). Rcn3 expression was detected in the lung tissues from these mice. Furthermore, conditional knockout (CKO) mice with Rcn3 deletion specific to AECIIs were used to explore the role of Rcn3 in PPE-induced emphysema progression. Rcn3 protein expression in lung tissues was evaluated by Western blot and immunohistochemistry. Rcn3 mRNA expression in lung tissues was detected by qPCR. RESULTS: Rcn3 expression was significantly increased in the lung specimens from COPD patients versus non-COPD patients and the level of Rcn3 increase was associated with the degree of emphysema. Rcn3 expression were also significantly up-regulated in both CS-induced and PPE-induced emphysematous mouse lungs. Moreover, the selective ablation of Rcn3 in AECIIs significantly alleviated severity of the mouse emphysema in response to intratracheal installation of PPE. CONCLUSION: Our data, for the first time, indicated that suppression of Rcn3 expression in AECIIs has a beneficial effect on PPE-induced emphysema.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Células Epiteliales Alveolares , Animales , Proteínas de Unión al Calcio , Humanos , Pulmón , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/genética , Porcinos
6.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L627-L639, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625944

RESUMEN

Acute respiratory distress syndrome (ARDS) is characterized by acute lung injury (ALI) secondary to an excessive alveolar inflammatory response. Reticulocalbin 3 (Rcn3) is an endoplasmic reticulum (ER) lumen protein in the secretory pathway. We previously reported the indispensable role of Rcn3 in type II alveolar epithelial cells (AECIIs) during lung development and the lung injury repair process. In the present study, we further observed a marked induction of Rcn3 in the alveolar epithelium during LPS-induced ALI. In vitro alveolar epithelial (MLE-12) cells consistently exhibited a significant induction of Rcn3 accompanied with NF-κB activation in response to LPS exposure. We examined the role of Rcn3 in the alveolar inflammatory response by using mice with a selective deletion of Rcn3 in alveolar epithelial cells upon doxycycline administration. The Rcn3 deficiency significantly blunted the ALI and alveolar inflammation induced by intratracheal LPS instillation but not that induced by an intraperitoneal LPS injection (secondary insult); the alleviated ALI was accompanied by decreases in NF-κB activation and NLRP3 levels but not in GRP78 and cleaved caspase-3 levels. The studies conducted in MLE-12 cells consistently showed that Rcn3 knockdown blunted the activations of NF-κB signaling and NLRP3-dependent inflammasome upon LPS exposure. Collectively, these findings suggest a novel role for Rcn3 in regulating the alveolar inflammatory response to pulmonary infection via the NF-κB/NLRP3/inflammasome axis and shed additional light on the mechanism of ARDS/ALI.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Células Epiteliales Alveolares/metabolismo , Proteínas de Unión al Calcio/fisiología , Inflamación/prevención & control , Lipopolisacáridos/toxicidad , FN-kappa B/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Chaperón BiP del Retículo Endoplásmico , Femenino , Inflamasomas , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/genética , Transducción de Señal
7.
Sci China Life Sci ; 64(7): 1116-1130, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32997330

RESUMEN

The Y chromosome plays key roles in male fertility and reflects the evolutionary history of paternal lineages. Here, we present a de novo genome assembly of the Hu sheep with the first draft assembly of ovine Y chromosome (oMSY), using nanopore sequencing and Hi-C technologies. The oMSY that we generated spans 10.6 Mb from which 775 Y-SNPs were identified by applying a large panel of whole genome sequences from worldwide sheep and wild Iranian mouflons. Three major paternal lineages (HY1a, HY1b and HY2) were defined across domestic sheep, of which HY2 was newly detected. Surprisingly, HY2 forms a monophyletic clade with the Iranian mouflons and is highly divergent from both HY1a and HY1b. Demographic analysis of Y chromosomes, mitochondrial and nuclear genomes confirmed that HY2 and the maternal counterpart of lineage C represented a distinct wild mouflon population in Iran that diverge from the direct ancestor of domestic sheep, the wild mouflons in Southeastern Anatolia. Our results suggest that wild Iranian mouflons had introgressed into domestic sheep and thereby introduced this Iranian mouflon specific lineage carrying HY2 to both East Asian and Africa sheep populations.


Asunto(s)
Evolución Biológica , Oveja Doméstica/genética , Secuenciación Completa del Genoma/métodos , Cromosoma Y/genética , Animales , Variación Genética , Masculino , Filogenia
8.
Microb Genom ; 6(9)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32783805

RESUMEN

Microsporidia are a large group of unicellular parasites that infect insects and mammals. The simpler life cycle of microsporidia in insects provides a model system for understanding their evolution and molecular interactions with their hosts. However, no complete genome is available for insect-parasitic microsporidian species. The complete genome of Antonospora locustae, a microsporidian parasite that obligately infects insects, is reported here. The genome size of A. locustae is 3 170 203 nucleotides, composed of 17 chromosomes onto which a total of 1857 annotated genes have been mapped and detailed. A unique feature of the A. locustae genome is the presence of an ultra-low GC region of approximately 25 kb on 16 of the 17 chromosomes, in which the average GC content is only 20 %. Transcription profiling indicated that the ultra-low GC region of the parasite could be associated with differential regulation of host defences in the fat body to promote the parasite's survival and propagation. Phylogenetic gene analysis showed that A. locustae, and the microsporidian family in general, is likely at an evolutionarily transitional position between prokaryotes and eukaryotes, and that it evolved independently. Transcriptomic analysis showed that A. locustae can systematically inhibit the locust phenoloxidase PPO, TCA and glyoxylate cycles, and PPAR pathways to escape melanization, and can activate host energy transfer pathways to support its reproduction in the fat body, which is an insect energy-producing organ. Our study provides a platform and model for studies of the molecular mechanisms of microsporidium-host interactions in an energy-producing organ and for understanding the evolution of microsporidia.


Asunto(s)
Cromosomas Fúngicos/genética , Perfilación de la Expresión Génica/métodos , Saltamontes/microbiología , Proteínas de Insectos/genética , Microsporidios/genética , Secuenciación Completa del Genoma/métodos , Animales , Composición de Base , Cuerpo Adiposo/microbiología , Regulación de la Expresión Génica , Tamaño del Genoma , Saltamontes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Microbiota-Huesped , Microsporidios/clasificación , Anotación de Secuencia Molecular , Monofenol Monooxigenasa/genética , Receptores Activados del Proliferador del Peroxisoma/genética , Filogenia
9.
Sci Adv ; 6(14): eaaz7825, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270046

RESUMEN

Currently, there are no methods available offering solutions to select and identify antibodies binding to a specific conformational epitope of an antigen. Here, we developed a method to allow epitope-directed antibody selection from a phage display library by photocrosslinking bound antibodies to a site that specifically incorporates a noncanonical amino acid, p-benzoyl-l-phenylalanine (pBpa), on the target antigen epitope. By one or two rounds of panning against antibody phage display libraries, those hits that covalently bind to the proximity site of pBpa on specific epitopes of target antigens after ultraviolet irradiation are enriched and selected. This method was applied to specific epitopes on human interleukin-1ß and complement 5a. In both cases, more than one-third of hits identified bind to the target epitopes, demonstrating the feasibility and versatility of this method.


Asunto(s)
Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Selección Clonal Mediada por Antígenos , Epítopos/inmunología , Animales , Anticuerpos Neutralizantes , Linfocitos B/inmunología , Linfocitos B/metabolismo , Selección Clonal Mediada por Antígenos/inmunología , Selección Clonal Mediada por Antígenos/efectos de la radiación , Humanos , Inmunización , Ratones , Biblioteca de Péptidos , Unión Proteica , Rayos Ultravioleta
10.
Reprod Domest Anim ; 55(6): 737-746, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32181932

RESUMEN

Previous studies have shown that four and a half LIM domain protein 2 (FHL2) plays an essential role in the regulation of follicular development in mammals. Although the FHL2 genes of human and mouse have been well characterized, the expression and location of FHL2 in ovary and the biological functions of FHL2 on granulosa cells (GCs) of ovine are still not clear. In this study, full-length complementary DNA (cDNA) of FHL2 from ovine follicular GCs was amplified by real-time PCR (RT-PCR). The expression and location of FHL2 in ovary and GCs of ovine were studied by immunohistochemistry and immunofluorescence, and the biological effects of FHL2 on the cell proliferation, cell apoptosis, cell cycles and expression level of related genes of ovine GCs were also explored by overexpression or knockdown of FHL2. The results indicated that FHL2 was expressed in ovine follicular GCs and the sequence of the FHL2 cDNA was consistent with that predicted in GenBank, which did not cause an amino acid change. According to the results, FHL2 was expressed in ovine ovary and mainly located in the cytoplasm and nucleus of GCs. In addition, overexpression of FHL2 significantly reduced the cell viability, promoted the cell apoptosis and decreased the percentage of G0/G1 and S phase cells. RT-PCR showed that overexpression of FHL2 significantly increased the mRNA expression level of Bax and decreased the expression of Bcl-2 and the Bcl-2/Bax mRNA ratio compared with the control group. Besides, the knockdown of FHL2 gene in ovine GCs significantly improved the cell viability, suppressed the cell apoptosis, decreased the mRNA expression level of Caspase-3 gene, increased the Bcl-2/Bax mRNA ratio and increased the percentage of S and G2/M phase cells. Our results suggest that FHL2 may play an important role in the biological functions of GCs in ovine.


Asunto(s)
Células de la Granulosa/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Proteínas Musculares/metabolismo , Factores de Transcripción/metabolismo , Animales , ADN Complementario , Femenino , Técnicas de Silenciamiento del Gen , Proteínas con Homeodominio LIM/genética , Proteínas Musculares/genética , Ovario , Ovinos , Factores de Transcripción/genética
11.
Front Immunol ; 11: 260, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161588

RESUMEN

Ruminants are critical as prey in transferring solar energy fixed by plants into carnivorous species, yet the genetic signature of the driving forces leading to the evolutionary success of the huge number of ruminant species remains largely unknown. Here we report a complete DNA map of the major histocompatibility complex (MHC) of the addax (Addax nasomaculatus) genome by sequencing a total of 47 overlapping BAC clones previously mapped to cover the MHC region. The addax MHC is composed of 3,224,151 nucleotides, harboring a total of 150 coding genes, 50 tRNA genes, and 14 non-coding RNA genes. The organization of addax MHC was found to be highly conserved to those of sheep and cattle, highlighted by a large piece of chromosome inversion that divided the MHC class II into IIa and IIb subregions. It is now highly possible that all of the ruminant species in the family of Bovidae carry the same chromosome inversion in the MHC region, inherited from a common ancestor of ruminants. Phylogenetic analysis indicated that DY, a ruminant-specific gene located at the boundary of the inversion and highly expressed in dendritic cells, was possibly evolved from DQ, with an estimated divergence time ~140 million years ago. Homology modeling showed that the overall predicted structure of addax DY was similar to that of HLA-DQ2. However, the pocket properties of P1, P4, P6, and P9, which were critical for antigen binding in the addax DY, showed certain distinctive features. Structural analysis suggested that the populations of peptide antigens presented by addax DY and HLA-DQ2 were quite diverse, which in theory could serve to promote microbial regulation in the rumen by ruminant species, contributing to enhanced grass utilization ability. In summary, the results of our study helped to enhance our understanding of the MHC evolution and provided additional supportive evidence to our previous hypothesis that an ancient chromosome inversion in the MHC region of the last common ancestor of ruminants may have contributed to the evolutionary success of current ruminants on our planet.


Asunto(s)
Evolución Molecular , Complejo Mayor de Histocompatibilidad/genética , Rumiantes/genética , Aminoácidos/genética , Animales , Antílopes , Inversión Cromosómica/genética , Genoma , Mamíferos/genética , Filogenia , ARN no Traducido , Secuencias Repetitivas de Ácidos Nucleicos
12.
G3 (Bethesda) ; 9(12): 4223-4233, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31645420

RESUMEN

Genetic mapping is a primary tool of genetics in model organisms; however, many quantitative trait loci (QTL) contain tens or hundreds of positional candidate genes. Prioritizing these genes for validation is often ad hoc and biased by previous findings. Here we present a technique for prioritizing positional candidates based on computationally inferred gene function. Our method uses machine learning with functional genomic networks, whose links encode functional associations among genes, to identify network-based signatures of functional association to a trait of interest. We demonstrate the method by functionally ranking positional candidates in a large locus on mouse Chr 6 (45.9 Mb to 127.8 Mb) associated with histamine hypersensitivity (Histh). Histh is characterized by systemic vascular leakage and edema in response to histamine challenge, which can lead to multiple organ failure and death. Although Histh risk is strongly influenced by genetics, little is known about its underlying molecular or genetic causes, due to genetic and physiological complexity of the trait. To dissect this complexity, we ranked genes in the Histh locus by predicting functional association with multiple Histh-related processes. We integrated these predictions with new single nucleotide polymorphism (SNP) association data derived from a survey of 23 inbred mouse strains and congenic mapping data. The top-ranked genes included Cxcl12, Ret, Cacna1c, and Cntn3, all of which had strong functional associations and were proximal to SNPs segregating with Histh. These results demonstrate the power of network-based computational methods to nominate highly plausible quantitative trait genes even in challenging cases involving large QTL and extreme trait complexity.


Asunto(s)
Mapeo Cromosómico , Histamina/genética , Hipersensibilidad/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Ratones
13.
BMC Genomics ; 20(1): 479, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31185912

RESUMEN

BACKGROUND: The mammalian major histocompatibility complex (MHC) harbours clusters of genes associated with the immunological defence of animals against infectious pathogens. At present, no complete MHC physical map is available for any of the wild ruminant species in the world. RESULTS: The high-density physical map is composed of two contigs of 47 overlapping bacterial artificial chromosome (BAC) clones, with an average of 115 Kb for each BAC, covering the entire addax MHC genome. The first contig has 40 overlapping BAC clones covering an approximately 2.9 Mb region of MHC class I, class III, and class IIa, and the second contig has 7 BAC clones covering an approximately 500 Kb genomic region that harbours MHC class IIb. The relative position of each BAC corresponding to the MHC sequence was determined by comparative mapping using PCR screening of the BAC library of 192,000 clones, and the order of BACs was determined by DNA fingerprinting. The overlaps of neighboring BACs were cross-verified by both BAC-end sequencing and co-amplification of identical PCR fragments within the overlapped region, with their identities further confirmed by DNA sequencing. CONCLUSIONS: We report here the successful construction of a high-quality physical map for the addax MHC region using BACs and comparative mapping. The addax MHC physical map we constructed showed one gap of approximately 18 Mb formed by an ancient autosomal inversion that divided the MHC class II into IIa and IIb. The autosomal inversion provides compelling evidence that the MHC organizations in all of the ruminant species are relatively conserved.


Asunto(s)
Antílopes/genética , Cromosomas Artificiales Bacterianos/genética , Genómica , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Mapeo Físico de Cromosoma/métodos , Animales , Bovinos , Evolución Molecular , Masculino , Reacción en Cadena de la Polimerasa
14.
Oncogene ; 38(31): 5959-5970, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31253867

RESUMEN

Human epithelial cells can be infected by more than 200 types of human papilloma viruses (HPVs), and persistent HPV infections lead to cervical cancer or other deadly cancers. It has been established that mitotic progression is critical for HPV16 infection, but the underlying mechanism remains unknown. Here, we report that oncoprotein E7 of HPV16 but not HPV18 retards mitotic progression in host cell by direct binding to the C terminus of Microtubule-Associated Protein 4 (MAP4). MAP4 is a novel bona fide target of HPV16E7 protein which binds and recruits the latter to spindle microtubule in mitosis. HPV16E7 protein promotes MAP4 stability by inhibiting MAP4 phosphorylation- mediated degradation to increase the stability of microtubule polymerization and cause an extend mitotic progression. We further uncovered that Mps1 is a kinase of MAP4, and E7-MAP4 binding blocks Mps1 phosphorylation of MAP4, thereby interrupting phosphorylation-dependent MAP4 degradation. Mutations of MAP4 at T927ES928E partially abolished E7-binding capacity and rescued mitotic progression in host cells. In conclusion, our study reveals a molecular mechanism by which HPV16E7 perturbs host mitotic progression by interfering Mps1-MAP4 signaling cascade, which results in an extended infection window and may facilitate the persistent HPV16 infection.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Alphapapillomavirus/aislamiento & purificación , Células HeLa , Humanos , Proteínas E7 de Papillomavirus , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Fosforilación , Unión Proteica , Acoplamiento Viral
15.
Virology ; 531: 162-170, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884426

RESUMEN

Limited sampling means that relatively little is known about the diversity and evolutionary history of mammalian members of the Hepadnaviridae (genus Orthohepadnavirus). An important case in point are shrews, the fourth largest group of mammals, but for which there is limited knowledge on the role they play in viral evolution and emergence. Here, we report the discovery of a novel shrew hepadnavirus. The newly discovered virus, denoted shrew hepatitis B virus (SHBV), is divergent to be considered a new species of Orthohepadnavirus. Phylogenetic analysis revealed that these viruses were usually most closely related to TBHBV (tent-making bat hepatitis B virus), known to be able to infect human hepatocytes, and had a similar genome structure, although SHBV fell in a more basal position in the surface protein phylogeny. In sum, these data suggest that shrews are natural hosts for hepadnaviruses and may have played an important role in their long-term evolution.


Asunto(s)
Evolución Molecular , Infecciones por Hepadnaviridae/veterinaria , Infecciones por Hepadnaviridae/virología , Hepadnaviridae/aislamiento & purificación , Musarañas/virología , Secuencia de Aminoácidos , Animales , China , Genoma Viral , Hepadnaviridae/química , Hepadnaviridae/clasificación , Hepadnaviridae/genética , Infecciones por Hepadnaviridae/transmisión , Hepatocitos/virología , Humanos , Orthohepadnavirus/clasificación , Orthohepadnavirus/genética , Orthohepadnavirus/aislamiento & purificación , Filogenia , Alineación de Secuencia , Musarañas/clasificación , Proteínas Virales/química , Proteínas Virales/genética
16.
Br J Cancer ; 120(7): 728-745, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30816325

RESUMEN

BACKGROUND: SHON nuclear expression (SHON-Nuc+) was previously reported to predict clinical outcomes to tamoxifen therapy in ERα+ breast cancer (BC). Herein we determined if SHON expression detected by specific monoclonal antibodies could provide a more accurate prediction and serve as a biomarker for anthracycline-based combination chemotherapy (ACT). METHODS: SHON expression was determined by immunohistochemistry in the Nottingham early-stage-BC cohort (n = 1,650) who, if eligible, received adjuvant tamoxifen; the Nottingham ERα- early-stage-BC (n = 697) patients who received adjuvant ACT; and the Nottingham locally advanced-BC cohort who received pre-operative ACT with/without taxanes (Neo-ACT, n = 120) and if eligible, 5-year adjuvant tamoxifen treatment. Prognostic significance of SHON and its relationship with the clinical outcome of treatments were analysed. RESULTS: As previously reported, SHON-Nuc+ in high risk/ERα+ patients was significantly associated with a 48% death risk reduction after exclusive adjuvant tamoxifen treatment compared with SHON-Nuc- [HR (95% CI) = 0.52 (0.34-0.78), p = 0.002]. Meanwhile, in ERα- patients treated with adjuvant ACT, SHON cytoplasmic expression (SHON-Cyto+) was significantly associated with a 50% death risk reduction compared with SHON-Cyto- [HR (95% CI) = 0.50 (0.34-0.73), p = 0.0003]. Moreover, in patients received Neo-ACT, SHON-Nuc- or SHON-Cyto+ was associated with an increased pathological complete response (pCR) compared with SHON-Nuc+ [21 vs 4%; OR (95% CI) = 5.88 (1.28-27.03), p = 0.012], or SHON-Cyto- [20.5 vs. 4.5%; OR (95% CI) = 5.43 (1.18-25.03), p = 0.017], respectively. After receiving Neo-ACT, patients with SHON-Nuc+ had a significantly lower distant relapse risk compared to those with SHON-Nuc- [HR (95% CI) = 0.41 (0.19-0.87), p = 0.038], whereas SHON-Cyto+ patients had a significantly higher distant relapse risk compared to SHON-Cyto- patients [HR (95% CI) = 4.63 (1.05-20.39), p = 0.043]. Furthermore, multivariate Cox regression analyses revealed that SHON-Cyto+ was independently associated with a higher risk of distant relapse after Neo-ACT and 5-year tamoxifen treatment [HR (95% CI) = 5.08 (1.13-44.52), p = 0.037]. The interaction term between ERα status and SHON-Nuc+ (p = 0.005), and between SHON-Nuc+ and tamoxifen therapy (p = 0.007), were both statistically significant. CONCLUSION: SHON-Nuce+ in tumours predicts response to tamoxifen in ERα+ BC while SHON-Cyto+ predicts response to ACT.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Proteínas Oncogénicas/metabolismo , Tamoxifeno/uso terapéutico , Adolescente , Adulto , Anciano , Antraciclinas/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Núcleo Celular/metabolismo , Quimioterapia Adyuvante , Supervivencia sin Enfermedad , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Recurrencia Local de Neoplasia/epidemiología , Pronóstico , Adulto Joven
17.
Am J Respir Cell Mol Biol ; 59(3): 320-333, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29676583

RESUMEN

Reticulocalbin 3 (Rcn3) is an endoplasmic reticulum (ER) lumen protein localized to the secretory pathway. We have reported that Rcn3 plays a critical role in alveolar epithelial type II cell maturation during perinatal lung development, but its biological role in the adult lung is largely unknown. In this study, we found marked induction of Rcn3 expression in alveolar epithelium during bleomycin-induced pulmonary fibrosis, which is most obvious in alveolar epithelial type II cells (AECIIs). To further examine Rcn3 in pulmonary injury remodeling, we generated transgenic mice to selectively delete Rcn3 in AECIIs in adulthood. Although Rcn3 deletion did not cause obvious abnormalities in the lung architecture and mechanics, the exposure of Rcn3-deleted mice to bleomycin led to exacerbated pulmonary fibrosis and reduced lung mechanics. These Rcn3-deleted mice also displayed enhanced alveolar epithelial cell (AEC) apoptosis and ER stress after bleomycin treatment, which was confirmed by in vitro studies both in primary AECIIs and mouse lung epithelial cells. Consistently, Rcn3 deficiency also enhanced ER stress and apoptosis induced by ER stress inducers, tunicamycin and thapsigargin. In addition, Rcn3 deficiency caused blunted wound closure capability of AECs, but not altered proliferation and bleomycin-induced epithelial-mesenchymal transition process. Collectively, these findings indicate that bleomycin-induced upregulation of Rcn3 in AECIIs appears to contribute to AECII survival and wound healing. These observations, for the first time, suggest a novel role of Rcn3 in regulating pulmonary injury remodeling, and shed additional light on the mechanism of idiopathic pulmonary fibrosis.


Asunto(s)
Adaptación Fisiológica/fisiología , Células Epiteliales Alveolares/metabolismo , Bleomicina/farmacología , Proteínas de Unión al Calcio/metabolismo , Pulmón/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Animales , Proteínas de Unión al Calcio/deficiencia , Ratones Transgénicos , Morfogénesis/fisiología , Fenotipo , Fosfolípidos/metabolismo , Insuficiencia Respiratoria/metabolismo
18.
Virology ; 514: 88-97, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29153861

RESUMEN

To better understand the evolution of hepadnaviruses, we sampled bats from Guizhou, Henan and Zhejiang provinces, China, and rodents from Zhejiang province. Genetically diverse hepadnaviruses were identified in a broad range of bat species, with an overall prevalence of 13.3%. In contrast, no rodent hepadnaviruses were identified. The newly discovered bat hepadnaviruses fell into two distinct phylogenetic groups. The viruses within the first group exhibited high diversity, with some closely related to viruses previously identified in Yunnan province. Strikingly, the newly discovered viruses sampled from Jiyuan city in the second phylogenetic group were most closely related to those found in bats from West Africa, suggestive of a long-term association between bats and hepadnaviruses. A co-phylogenetic analysis revealed frequent cross-species transmission among bats from different species, genera, and families. Overall, these data suggest that there are likely few barriers to the cross-species transmission of bat hepadnaviruses.


Asunto(s)
Quirópteros/virología , Evolución Molecular , Variación Genética , Infecciones por Hepadnaviridae/veterinaria , Hepadnaviridae/genética , Hepadnaviridae/aislamiento & purificación , Animales , China , Genoma Viral , Hepadnaviridae/clasificación , Infecciones por Hepadnaviridae/virología , Filogenia
19.
Oncotarget ; 8(1): 315-328, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27852070

RESUMEN

Epithelial-Mesenchymal Transition (EMT) is a critical step in the progression of cancer. Malignant melanoma, a cancer developed from pigmented melanocytes, metastasizes through an EMT-like process. Ten-eleven translocation (TET) enzymes, catalyzing the conversion of 5-methylcytosine (5mC) to 5-hydroxylmethylcytosine (5-hmC), are down regulated in melanoma. However, their roles in the progression and the EMT-like process of melanoma are not fully understood. Here we report that DNA methylation induced silencing of TET2 and TET3 are responsible for the EMT-like process and the metastasis of melanoma. TET2 and TET3 are down regulated in the TGF-ß1-induced EMT-like process, and the knocking down of TET2 or TET3 induced this EMT-like process. A DNA demethylating agent antagonized the TGF-ß-induced suppression of TET2 and TET3. Furthermore, a ChIP analysis indicated that enhanced recruitment of DNMT3A (DNA Methyltransferase 3A) is the mechanism by which TGF-ß induces the silencing of TET2 and TET3. Finally, the overexpression of the TET2 C-terminal sequence partially rescues the TGF-ß1-induced EMT-like process in vitro and inhibits tumor growth and metastasis in vivo. Hence, our data suggest an epigenetic circuitry that mediates the EMT activated by TGF-ß. As an effector, DNMT3A senses the TGF-ß signal and silences TET2 and TET3 promoters to induce the EMT-like process and metastasis in melanoma.


Asunto(s)
Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Proteínas Proto-Oncogénicas/genética , Factor de Crecimiento Transformador beta1/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Desmetilación del ADN/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/metabolismo , Decitabina , Dioxigenasas/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Clin Lab ; 62(3): 293-300, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27156316

RESUMEN

BACKGROUND: Reticulocalbin 3 (RCN3), a member of CREC (Cab45/reticulocalbin/ ERC-45/calumenin) family protein, is located in the secretory pathway of endoplasmic reticulum (ER) of living cells. Disruption of RCN3 leads to failure of lung function in the mouse model. Although ER stress has been associated with the development of a variety of tumors, the role of RCN3 in development of non-small cell lung cancer (NSCLC) in human is unknown at present. METHODS: In this study a total of 41 paired NSCLC specimens (cancer group) and the adjacent normal tissues (control group) were obtained from patients undergoing lung lobectomy or pneumonectomy surgeries in Beijing Shijitan Hospital, Capital Medical University. The RCN3 mRNA and protein level in each clinical sample was determined using quantitative real time-PCR and immunoblotting, respectively. Immunohistochemistry analysis was utilized to compare the protein expressional patterns of RCN3 between the two clinical sample groups. RESULTS: Immunoblotting showed that levels of RCN3 protein in the NSCLC tissues were significantly lower than those in the control group (p < 0.001), suggesting ER stress is closely associated with the cancer cells. Accordingly, the ER stress protein GRP78 (glucose-regulated protein 78, also known as BIP) was remarkably upregulated in the cancer group (p < 0.05). Within the cancer group, a significant difference in RCN3 protein expression was observed in squamous cell carcinoma versus adenocarcinoma (p < 0.05). In the lung cancer group, however, RCN3 protein levels were not correlated with the age and the gender. In addition, RCN3 mRNA levels showed no significant difference between the cancer and the control groups, suggesting that the differential regulation of RCN3 is likely at post-transcription stage in NSCLC. CONCLUSIONS: Our study showed that RCN3 protein level was significantly down regulated in NSCLC, suggesting a potential correlation between RCN3 protein depletion and development of NSCLC. Although the exact cause-effect relationship between RCN3 and NSCLC needs to be further investigated, the study helps to shed additional lights on the molecular regulation of the lung cancer.


Asunto(s)
Proteínas de Unión al Calcio/análisis , Carcinoma de Pulmón de Células no Pequeñas/química , Neoplasias Pulmonares/química , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de Unión al Calcio/genética , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...