Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Sci ; 20(10): 3760-3772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113691

RESUMEN

Histone modification is one of the key elements in epigenetic control and plays important roles in regulation of biological processes and disease development. Currently, records of human histone modifications with various levels of confidence in evidence are scattered in various knowledgebases and databases. In the present study, a curated catalogue of human histone modifications, CHHM, was obtained by manual retrieval, evidence assessment, and integration of modification records from 10 knowledgebases/databases and 3 complementary articles. CHHM contains 6612 nonredundant modification entries covering 31 types of modifications (including 9 types of emerging modifications) and 2 types of histone-DNA crosslinks, that were identified in 11 H1 variants, 21 H2A variants, 21 H2B variants, 9 H3 variants, and 2 H4 variants. For ease of visualization and accessibility, modification entries are presented with aligned protein sequences in an Excel file. Confidence level in evidence is provided for each entry. Acylation modifications contribute to the highest number of modification entries in CHHM. This supports that cellular metabolic status plays a very important role in epigenetic control. CHHM reveals modification hotspot regions and uneven distribution of the modification entries across the histone families. Such uneven distribution may suggest that a particular histone family is more susceptible to certain types of modifications. CHHM not only serves as an important and user-friendly resource for biomedical and clinical researches involving histone modifications and transcriptional regulation, but also provides new insights for basic researches in the mechanism of human histone modifications and epigenetic control.


Asunto(s)
Código de Histonas , Histonas , Humanos , Histonas/metabolismo , Histonas/genética , Epigénesis Genética , Procesamiento Proteico-Postraduccional
2.
Gene ; 927: 148753, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972556

RESUMEN

BACKGROUND: Transgenic insect-resistant rice offers an environmentally friendly approach to mitigate yield losses caused by lepidopteran pests, such as stem borers. Bt (Bacillus thuringiensis) genes encode insecticidal proteins and are widely used to confer insect resistance to genetically modified crops. This study investigated the integration, inheritance, and expression characteristics of codon-optimised synthetic Bt genes, cry1C* and cry2A*, in transgenic early japonica rice lines. METHODS: The early japonica rice cultivar, Songgeng 9 (Oryza sativa), was transformed with cry1C* or cry2A*, which are driven by the ubi promoter via Agrobacterium tumefaciens-mediated transformation. Molecular analyses, including quantitative PCR (qPCR), enzyme-linked immunosorbent assay (ELISA), and Southern blot analysis were performed to confirm transgene integration, inheritance, transcriptional levels, and protein expression patterns across different tissues and developmental stages. RESULTS: Stable transgenic early japonica lines exhibiting single-copy transgene integration were established. Transcriptional analysis revealed variations in Bt gene expression among lines, tissues, and growth stages, with higher expression levels observed in leaves than in other organs. Notably, cry2A* exhibited consistently higher mRNA and protein levels than cry1C* across all examined tissues and developmental time points. Bt protein accumulation followed the trend of leaves > stem sheaths > young panicles > brown rice, with peak expression during the filling stage in the vegetative tissues. CONCLUSIONS: Synthetic cry2A* displayed markedly elevated transcription and translation compared to cry1C* in the transgenic early japonica rice lines examined. Distinct spatiotemporal patterns of Bt gene expression were elucidated, providing insights into the potential insect resistance conferred by these genes in rice. These findings will contribute to the development of insect-resistant japonica rice varieties and facilitate the rational deployment of Bt crops.


Asunto(s)
Proteínas Bacterianas , Endotoxinas , Oryza , Plantas Modificadas Genéticamente , Oryza/genética , Oryza/parasitología , Plantas Modificadas Genéticamente/genética , Animales , Endotoxinas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/genética , Toxinas de Bacillus thuringiensis/genética , Bacillus thuringiensis/genética , Mariposas Nocturnas/genética , Regulación de la Expresión Génica de las Plantas , Control Biológico de Vectores/métodos
3.
Cell Rep ; 43(7): 114410, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923457

RESUMEN

Polymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by "undetectable" polymyxin-dependent A. baumannii.


Asunto(s)
Acinetobacter baumannii , Arginina , Polimixinas , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Arginina/metabolismo , Polimixinas/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Operón/genética , Fosfatidiletanolaminas/metabolismo , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica
4.
Foods ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38890846

RESUMEN

Glutinous rice (GR), an important food crop in Asia, provides prolonged energy for the human body due to its high amylopectin content. The non-volatile metabolites generated by different cooking methods that affect the nutritional value and color of GR are still poorly understood. Herein, a widely targeted metabolomics approach was used to understand the effects of different cooking methods (steaming, baking, and frying) on the metabolite profiles of GR. Compared with other treatments, steamed GR had a brighter color and significantly lower contents of total sugar, starch, amylopectin, and amylose, at 40.74%, 14.13%, 9.78%, and 15.18%, respectively. Additionally, 70, 108, and 115 metabolites were significantly altered in the steaming, baking, and frying groups respectively, and amino acid and carbohydrate metabolism were identified as the representative metabolic pathways based on KEGG annotations. Further evaluation of 14 amino acids and 12 carbohydrates in steamed GR, especially 4-aminobutyric acid, suggested its high nutraceutical value. Additionally, multivariate analysis indicated that total sugar content, amylose content, beta-alanine methyl ester hydrochloride, and 4-aminobutyric acid played a critical role in color formation in raw and cooked GR. Finally, the levels of major amino acids and carbohydrates were quantified by conventional methods to verify the reliability of the metabolome. Consequently, this in-depth understanding of metabolite profiling in normal cooking methods has provided a foundation for the processing of GR products.

5.
ACS Omega ; 9(15): 17097-17103, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645313

RESUMEN

In the present work, the thermoelectric properties of PbTe embedded with spherical Sb nanoscale inclusions were calculated in detail, following the idea that energy-selective carrier scattering can effectively increase the Seebeck coefficient. The quantitative relationships between such nanostructures in PbTe and thermoelectric properties indicated that interface potential barrier induced by Sb nanoinclusions results in a significant enhancement of the Seebeck coefficient, especially when around room temperature. Furthermore, the optimal parameters for boosting the thermoelectric performance of PbTe were found to be 4 nm-radius Sb nanoinclusions with high concentration.

7.
Sci Data ; 11(1): 230, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388638

RESUMEN

By using PacBio HiFi technology, we produced over 700 Gb of long-read sequencing (LRS) raw data; and by using Illumina paired-end whole-genome shotgun (WGS) sequencing technology, we generated more than 70 Gb of short-read sequencing (SRS) data. With LRS data, we assembled one genome and then generate a set of annotation data for an early-matured Geng/japonica glutinous rice mega variety genome, Longgeng 57 (LG57), which carries multiple elite traits including good grain quality and wide adaptability. Together with the SRS data from three parents of LG57, pedigree genome variations were called for three representative types of genes. These data sets can be used for deep variation mining, aid in the discovery of new insights into genome structure, function, and evolution, and help to provide essential support to biological research in general.


Asunto(s)
Genoma de Planta , Oryza , Oryza/genética , Fenotipo , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
8.
Food Chem Toxicol ; 182: 114113, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890760

RESUMEN

Previous researches have demonstrated that the silica nanoparticles (SiNPs), which are widely used in all aspects of life, are hazardous to the male reproductive system. However, the cellular and molecular mechanism underlying SiNPs toxicity to the epididymis remain unclear. In this present study, a total of 60 male mice were separated into 4 groups and then treated to SiNPs for 7 consecutive days at a dose of 0, 2.5, 10, and 20 mg/kg body weight. The results showed that SiNPs could alter the histological structure of epididymis and induce sperm granuloma formation, leading to decreased sperm quality and quantity. In addition, the ultrastructure and permeability of blood-epididymal barrier (BEB) were impaired after exposure to SiNPs, and a significant downregulation of integral membrane proteins at the BEB was detected. SiNPs were also found to raise the percentage of macrophages in the epithelium and interstitium of the epididymis, followed by increased expression of pro-inflammatory molecules including TNF α, IL-1ß, and IL-6. Meanwhile, SiNPs induced oxidative stress in epididymis, as shown by the markedly elevated generation of reactive oxygen species (ROS) and malondialdehyde (MDA) and upregulated activity of superoxide dismutase (SOD). Further study showed that SiNPs activated the p38 MAPK signaling pathway, which accelerated clathrin-mediated endocytosis of integral membrane proteins and perturb vesicular trafficking. Taken together, exposure to SiNPs could induce sperm granuloma formation and impair the integrity of BEB in mice through activating the p38 MAPK pathway.


Asunto(s)
Epidídimo , Nanopartículas , Animales , Masculino , Ratones , Epidídimo/metabolismo , Dióxido de Silicio/toxicidad , Dióxido de Silicio/química , Semen/metabolismo , Espermatozoides/metabolismo , Estrés Oxidativo , Nanopartículas/toxicidad , Nanopartículas/química , Proteínas de la Membrana/metabolismo
9.
J Med Chem ; 66(4): 2865-2876, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36745479

RESUMEN

Polymyxins (polymyxin B and colistin) are lipopeptide antibiotics used as a last-line treatment for life-threatening multidrug-resistant (MDR) Gram-negative bacterial infections. Unfortunately, their clinical use has been affected by dose-limiting toxicity and increasing resistance. Structure-activity (SAR) and structure-toxicity (STR) relationships are paramount for the development of safer polymyxins, albeit very little is known about the role of the conserved position 10 threonine (Thr) residue in the polymyxin core scaffold. Here, we synthesized 30 novel analogues of polymyxin B1 modified explicitly at position 10 and examined the antimicrobial activity against Gram-negative bacteria and in vivo toxicity and performed molecular dynamics simulations with bacterial outer membranes. For the first time, this study revealed the stereochemical requirements and role of the ß-hydroxy side chain in promoting the correctly folded conformation of the polymyxin that drives outer membrane penetration and antibacterial activity. These findings provide essential information for developing safer and more efficacious new-generation polymyxin antibiotics.


Asunto(s)
Infecciones por Bacterias Gramnegativas , Polimixinas , Humanos , Antibacterianos/química , Polimixina B/química , Polimixina B/uso terapéutico , Colistina/química , Colistina/uso terapéutico , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico
10.
Anal Chem ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36630282

RESUMEN

Emerging evidence suggests that advanced glycation end-products (AGEs) such as Nε-(carboxymethyl)lysine (CML) and Nε-(carboxymethyl)lysine (CEL) may play important roles in certain human diseases. Reliable analytical methods are needed for their characterizations and measurements. Pitfalls have been reported for applications of LC-MS/MS to identify various types of post-translational modifications, but not yet for the case of AGEs. Here, we showed that in the absence of manual inspection, cysteine alkylation with 2-iodoacetamide (IAA) can result in false-positive/ambiguous identifications of CML >20%. They were attributed to offsite alkylation together with incorrect monoisotopic peak assignment (pitfall 1) or together with deamidation (pitfall 2). For pitfall 1, false-positive identifications can be alleviated using a peptide mass error tolerance ≤5 ppm during the database search. Pitfall 2 results in ambiguous modification assignments, which may be overcome by using other alkylation reagents. According to calculations of theoretical mass shifts, the use of other common alkylation reagents (iodoacetic acid, 2-chloroacetamide, and acrylamide) should face similar pitfalls. The use of acrylamide can result in false-positive identifications of CEL instead of CML. Subsequently, we showed that compared to IAA, the use of N-isopropylacrylamide (NIPAM) as an alkylation reagent achieved similar levels of proteome coverage, while reducing the offsite alkylation reactions at lysine by more than five times. Furthermore, false-positive/ambiguous identifications of CML due to the two types of pitfalls were absent when using NIPAM. NIPAM alkylation results in a unique mass shift that allows reliable identifications of CML and most likely other AGEs, such as CEL.

11.
BMC Plant Biol ; 22(1): 500, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36284279

RESUMEN

BACKGROUND: Rice is one of the most important cereal crops in the world but is susceptible to cold stress (CS). In this study, we carried out parallel transcriptomic analysis at the reproductive stage on the anthers of two Japonica rice varieties with contrasting CS resistance: cold susceptible Longjing11 (LJ11) and cold resistant Longjing25 (LJ25). RESULTS: According to the obtained results, a total of 16,762 differentially expressed genes (DEGs) were identified under CS, including 7,050 and 14,531 DEGs in LJ25 and LJ11, respectively. Examining gene ontology (GO) enrichment identified 35 up- and 39 down-regulated biological process BP GO terms were significantly enriched in the two varieties, with 'response to heat' and 'response to cold' being the most enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 33 significantly enriched pathways. Only the carbon metabolism and amino acid biosynthesis pathways with down-regulated DEGs were enriched considerably in LJ11, while the plant hormone signal transduction pathway (containing 153 DEGs) was dramatically improved. Eight kinds of plant hormones were detected in the pathway, while auxin, abscisic acid (ABA), salicylic acid (SA), and ethylene (ETH) signaling pathways were found to be the top four pathways with the most DEGs. Furthermore, the protein-protein interaction (PPI) network analysis identified ten hub genes (co-expressed gene number ≥ 30), including six ABA-related genes. Various DEGs (such as OsDREB1A, OsICE1, OsMYB2, OsABF1, OsbZIP23, OsCATC, and so on) revealed distinct expression patterns among rice types when the DEGs between LJ11 and LJ25 were compared, indicating that they are likely responsible for CS resistance of rice in cold region. CONCLUSION: Collectively, our findings provide comprehensive insights into complex molecular mechanisms of CS response and can aid in CS resistant molecular breeding of rice in cold regions.


Asunto(s)
Oryza , Ácido Abscísico/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Respuesta al Choque por Frío/genética , Etilenos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Salicílico/metabolismo , Transcriptoma
12.
J Med Chem ; 65(14): 10001-10013, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35786900

RESUMEN

Multidrug-resistant Gram-negative bacteria seriously threaten modern medicine due to the lack of efficacious therapeutic options. Their outer membrane (OM) is an essential protective fortress to exclude many antibiotics. Unfortunately, current structural biology methods are not able to resolve the membrane structure and it is difficult to examine the specific interaction between the OM and small molecules. These limitations hinder mechanistic understanding of antibiotic penetration through the OM and antibiotic discovery. Here, we developed biologically relevant OM models by quantitatively determining membrane lipidomics of Pseudomonas aeruginosa and elucidated how lipopolysaccharide modifications and OM vesicles mediated resistance to polymyxins. Supported by chemical biology and pharmacological assays, our multiscale molecular dynamics simulations provide an intelligent platform to quantify the membrane-penetrating thermodynamics of peptides and predict their antimicrobial activity. Through experimental validations with our in-house polymyxin analogue library, our computational strategy may have significant potential in accelerating the discovery of lipopeptides against bacterial "superbugs".


Asunto(s)
Antibacterianos , Lipopéptidos , Pseudomonas aeruginosa , Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Lipopéptidos/farmacología , Simulación de Dinámica Molecular , Polimixinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos
13.
Sci Rep ; 12(1): 6224, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418703

RESUMEN

The sensitivity of rice to low-temperature stress (LTS), especially at the reproductive stage, is a primary factor of rice yield fluctuation in cold cultivate region. Here, the changes of reactive oxygen species (ROS), osmotic adjustment substances, and antioxidants in different tissues were analyzed during rice growing under low temperatures (LT) at the reproductive stage. Results showed that LTS increases the levels of proline (Pro), soluble protein (SP), glutathione (GSH), superoxidase (SOD), and ascorbate peroxidase (APX) in LJ25 (LTS-resistant) and LJ11 (LTS-sensitive). The activities of catalase (CAT) and peroxidase (POD) were significantly increased in LJ25 but decreased in LJ11 under LTS, while an opposite trend in ROS and malondialdehyde (MDA) was observed in both varieties. Moreover, most physicochemical properties were higher in flag leaves and panicles compared with those in leaf sheaths. The expression patterns of OsCOIN, OsCATC, OsMAP1, OsPOX1, and OsAPX were the same with phenotypic changes in Pro and the enzymes encoded by them, confirming the accuracy of the physicochemical analysis. Therefore, only CAT and POD increased more in LJ25, suggesting they could be the key factors used for LT-tolerant breeding of rice in cold regions.


Asunto(s)
Oryza , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Glutatión/metabolismo , Oryza/metabolismo , Estrés Oxidativo , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Temperatura
14.
Phys Chem Chem Phys ; 24(9): 5360-5370, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35169820

RESUMEN

The cationic surfactant-lipid interaction directs the development of novel types of nanodrugs or nanocarriers. The membrane action of cationic surfactants also has a wide range of applications. In this work, combining a photo-voltage transient method with the traditional dynamic giant unilamellar vesicle (GUV) leakage assay and molecular dynamics (MD) simulations, we monitored the molecular actions of a representative cationic surfactant, tetradecyl trimethyl ammonium bromide (TTAB), in a wide concentration range (i.e., 0.5 µM-10 mM), on a phospholipid bilayer membrane in real time. With low concentrations (e.g., ≤10 µM), TTAB performed a three-stage acting process, including the structural-disturbance-dominated, adsorption-dominated, and dynamic equilibrium stages. At higher concentrations (e.g., ≥100 µM), this process was accelerated to two stages. Furthermore, TTAB induced deformation and even rupture of the membrane, due to the asymmetric disturbance of surfactant molecules on the two leaflets of a bilayer. All these disturbances induced membrane permeabilization, and the times at which these transitions occurred are given. This work provides information on time and molecular mechanism during the membrane actions of cationic surfactants, and provides a simple and real-time method in studying the dynamic processes at the membrane interface.


Asunto(s)
Fosfolípidos , Tensoactivos , Adsorción
15.
Ecotoxicol Environ Saf ; 231: 113210, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35051769

RESUMEN

The widespread use of silica nanoparticles (SiNPs) has increased the risk of human exposure, which raised concerns about their adverse effects on human health, especially the reproductive system. Previous studies have shown that SiNPs could cause damage to reproductive organs, but the specific mechanism is still unclear. In this study, to investigate the underlying mechanism of male reproductive toxicity induced by SiNPs, 40 male mice at the age of 8 weeks were divided into two groups and then intraperitoneally injected with vehicle control or 10 mg/kg SiNPs per day for one week. The results showed that SiNPs could damage testicular structure, perturb spermatogenesis and reduce serum testosterone levels, leading to a decrease in sperm quality and quantity. In addition, the ROS level in the testis of exposed mice was significantly increased, followed by imbalance of the oxidative redox status. Further study revealed that exposure to SiNPs led to cell cycle arrest and apoptosis, as shown by downregulation of the expression of positive cell cycle regulators and the activation of TNF-α/TNFR Ⅰ-mediated apoptotic pathway. The results demonstrated that SiNPs could cause testicles injure via inducing oxidative stress and DNA damage which led to cell cycle arrest and apoptosis, and thereby resulting in spermatogenic dysfunction.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Apoptosis , Puntos de Control del Ciclo Celular , Masculino , Ratones , Nanopartículas/toxicidad , Estrés Oxidativo , Dióxido de Silicio/toxicidad , Espermatogénesis
16.
ACS Biomater Sci Eng ; 8(1): 89-99, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34859992

RESUMEN

Hydrogels mimic the natural extracellular matrix in terms of their nanofibrous structure and large water content. However, the lack of a combination of properties including sufficient heterogeneity in the gel structure, intrinsic antimicrobial activity, and bioactivity limits the efficiency of hydrogels for tissue engineering applications. In this work, a hydrogel with a combination of these properties was fabricated by hybridizing silk fibroin with a low-molecular-weight peptide gelator. It was observed that silk fibroin and the peptide gelator assembled orthogonally in sequence. While the morphology of silk fibroin nanofibrils was not affected by the peptide gelator, silk fibroin promoted the formation of wider nanoribbons of the peptide gelator by modulating its nucleation and growth. Orthogonal assembly maintained the antimicrobial activity of the peptide gelator and the excellent biocompatibility of silk fibroin in the hybrid gel. The hybrid gel also demonstrated improved interactions with cells, an indicator of a higher bioactivity, possibly due to the heterogeneous double network structure.


Asunto(s)
Antiinfecciosos , Fibroínas , Antiinfecciosos/farmacología , Hidrogeles , Péptidos , Seda
17.
Langmuir ; 38(1): 50-61, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34963282

RESUMEN

Functionalization of silk fibroin hydrogel with antimicrobial activity is essential for promoting the applications of this excellent biomaterial. In this work, a simple approach based on electrostatic interaction is adopted to produce antimicrobial silk hydrogel containing an antimicrobial peptide (AMP), polymyxin B, an important last-line antibiotic to treat multidrug-resistant bacterial superbugs. The polycationic property of this peptide and the negative charge of silk fibroin lead to strong interactions between them, as demonstrated by changes in nanofibril structure, gelation kinetics, ζ-potential, fluorescence emission, and rheological properties of the gel. The hydrogels loaded with polymyxin B demonstrated antimicrobial activity against two Gram-negative bacterial strains. A combination of the results from the different characterizations suggests that the optimal molar ratio of polymyxin B to silk fibroin is 1:2.5. As most AMPs are cationic, this electrostatic approach is suitable for the straightforward functionalization of inert silk hydrogel with other AMPs.


Asunto(s)
Antiinfecciosos , Fibroínas , Antiinfecciosos/farmacología , Péptidos Antimicrobianos , Hidrogeles , Seda
18.
J Phys Chem Lett ; 12(48): 11629-11635, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817187

RESUMEN

Expression of mobile colistin resistance gene mcr-1 results in the addition of phosphoethanolamine (pEtN) to the lipid A headgroup in the bacterial outer membrane (OM) of Gram-negative bacteria, increasing the resistance to the last-line polymyxins. However, the potential biological consequences of such modification remain unclear. Using coarse-grained molecular simulations with quantitative lipidomics models, we discovered pEtN modification of the lipid A headgroup caused substantial changes to the morphology and physicochemical properties of the OM. Single-lipid level structural and energetic analyses revealed that this modification resulted in lipid A-pEtN adopting an abnormally twisted and slanted conformation with a closer packing state because of strengthened inter-lipid attraction. The consequent accumulation of lipid A-pEtN produced a negative curvature of the OM and altered the membrane's tension, fluidity, and rigidity. Our results provide a key mechanistic connection between mcr-1 expression and biophysical changes in the bacterial OM.


Asunto(s)
Antibacterianos/farmacología , Membrana Externa Bacteriana/metabolismo , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Lípido A/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Etanolaminofosfotransferasa/genética , Etanolaminas/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Simulación de Dinámica Molecular
19.
Chem Sci ; 12(36): 12211-12220, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34667587

RESUMEN

Multidrug-resistant Gram-negative bacteria represent a major medical challenge worldwide. New antibiotics are desperately required with 'old' polymyxins often being the only available therapeutic option. Here, we systematically investigated the structure-activity relationship (SAR) of polymyxins using a quantitative lipidomics-informed outer membrane (OM) model of Acinetobacter baumannii and a series of chemically synthesized polymyxin analogs. By integrating chemical biology and all-atom molecular dynamics simulations, we deciphered how each residue of the polymyxin molecule modulated its conformational folding and specific interactions with the bacterial OM. Importantly, a novel designed polymyxin analog FADDI-287 with predicted stronger OM penetration showed improved in vitro antibacterial activity. Collectively, our study provides a novel chemical biology and computational strategy to expedite the discovery of new-generation polymyxins against life-threatening Gram-negative 'superbugs'.

20.
Phys Chem Chem Phys ; 23(15): 9158-9165, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33885120

RESUMEN

Nanoparticles (NPs) promise a huge potential for clinical diagnostic and therapeutic applications. However, nano-bio (e.g., the NP-cell membrane) interactions and underlying mechanisms are still largely elusive. In this study, two types of congeneric peptides, namely PGLa and magainin 2 (MAG2), with similar membrane activities were employed as model ligands for NP decoration, and the diffusion behaviours (including both translation and rotation) of the ligand-decorated NPs on a lipid bilayer membrane were studied via molecular dynamics simulations. It was found that, although both PGLa- and MAG2-coated NPs showed alternatively "hopping" and "jiggling" diffusions, the PGLa-coated ones had an enhanced circling at the hopping stage, while a much confined circling at the jiggling stage. In contrast, the MAG2-coated NPs demonstrated constant circling tendencies throughout the diffusion process. Such differences in the coupling between translational and rotational dynamics of these two types of NPs are ascribed to the different ligand-lipid interactions of PGLa and MAG2, in which the PGLa ligands prefer to vertically insert into the membrane, while MAG2 tends to lie flat on the membrane surface. Our results are helpful for the understanding the underlying associations between the NP motions and their interfacial membrane interactions, and shed light on the possibility of regulating NP behaviours on a cellular surface for better biomedical uses.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Inmovilizadas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Magaininas/metabolismo , Nanopartículas/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Proteínas Inmovilizadas/química , Ligandos , Membrana Dobles de Lípidos/química , Magaininas/química , Simulación de Dinámica Molecular , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA