Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1291630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606074

RESUMEN

Climate change, characterized by rising atmospheric CO2 levels and temperatures, poses significant challenges to global crop production. Sweet sorghum, a prominent C4 cereal extensively grown in arid areas, emerges as a promising candidate for sustainable bioenergy production. This study investigated the responses of photosynthesis and leaf-scale water use efficiency (WUE) to varying light intensity (I) in sweet sorghum under different temperature and CO2 conditions. Comparative analyses were conducted between the A n-I, g s-I, T r-I, WUEi-I, and WUEinst-I models proposed by Ye et al. and the widely utilized the non-rectangular hyperbolic (NRH) model for fitting light response curves. The Ye's models effectively replicated the light response curves of sweet sorghum, accurately capturing the diminishing intrinsic WUE (WUEi) and instantaneous WUE (WUEinst) trends with increasing I. The fitted maximum values of A n, g s, T r, WUEi, and WUEinst and their saturation light intensities closely matched observations, unlike the NRH model. Despite the NRH model demonstrating high R 2 values for A n-I, g s-I, and T r-I modelling, it returned the maximum values significantly deviating from observed values and failed to generate saturation light intensities. It also inadequately represented WUE responses to I, overestimating WUE. Across different leaf temperatures, A n, g s, and T r of sweet sorghum displayed comparable light response patterns. Elevated temperatures increased maximum A n, g s, and T r but consistently declined maximum WUEi and WUEinst. However, WUEinst declined more sharply due to the disproportionate transpiration increase over carbon assimilation. Critically, sweet sorghum A n saturated at current atmospheric CO2 levels, with no significant gains under 550 µmol mol-1. Instead, stomatal closure enhanced WUE under elevated CO2 by coordinated g s and T r reductions rather than improved carbon assimilation. Nonetheless, this response diminished under simultaneously high temperature, suggesting intricate interplay between CO2 and temperature in modulating plant responses. These findings provide valuable insights into photosynthetic dynamics of sweet sorghum, aiding predictions of yield and optimization of cultivation practices. Moreover, our methodology serves as a valuable reference for evaluating leaf photosynthesis and WUE dynamics in diverse plant species.

2.
BMC Plant Biol ; 23(1): 167, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997861

RESUMEN

BACKGROUND: Prior drought stress may change plants response patterns and subsequently increase their tolerance to the same condition, which can be referred to as "drought memory" and proved essential for plants well-being. However, the mechanism of transcriptional drought memory in psammophytes remains unclear. Agriophyllum squarrosum, a pioneer species on mobile dunes, is widely spread in Northern China's vast desert areas with outstanding ability of water use efficiency. Here we conducted dehydration-rehydration treatment on A. squarrosum semi-arid land ecotype AEX and arid land ecotype WW to dissect the drought memory mechanism of A. squarrosum, and to determine the discrepancy in drought memory of two contrasting ecotypes that had long adapted to water heterogeneity. RESULT: Physiological traits monitoring unveiled the stronger ability and longer duration in drought memory of WW than that of AEX. A total of 1,642 and 1,339 drought memory genes (DMGs) were identified in ecotype AEX and WW, respectively. Furthermore, shared DMGs among A. squarrosum and the previously studied species depicted that drought memory commonalities in higher plants embraced pathways like primary and secondary metabolisms; while drought memory characteristics in A. squarrosum were mainly related to response to heat, high light intensity, hydrogen peroxide, and dehydration, which might be due to local adaptation to desert circumstances. Heat shock proteins (HSPs) occupied the center of the protein-protein interaction (PPI) network in drought memory transcription factors (TF), thus playing a key regulatory role in A. squarrosum drought memory. Co-expression analysis of drought memory TFs and DMGs uncovered a novel regulating module, whereby pairs of TFs might function as molecular switches in regulating DMG transforming between high and low expression levels, thus promoting drought memory reset. CONCLUSION: Based on the co-expression analysis, protein-protein interaction prediction, and drought memory metabolic network construction, a novel regulatory module of transcriptional drought memory in A. squarrosum was hypothesized here, whereby recurrent drought signal is activated by primary TF switches, then amplified by secondary amplifiers, and thus regulates downstream complicated metabolic networks. The present research provided valuable molecular resources on plants' stress-resistance basis and shed light on drought memory in A. squarrosum.


Asunto(s)
Chenopodiaceae , Ecotipo , Factores de Transcripción/genética , Deshidratación , Sequías , Plantas , Agua , Regulación de la Expresión Génica de las Plantas
4.
Front Plant Sci ; 13: 985572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204072

RESUMEN

Agriophyllum squarrosum (L.) Moq., well known as sandrice, is an important wild forage in sandy areas and a promising edible and medicinal resource plant with great domestication potential. Previous studies showed flavonoids are one of the most abundant medicinal ingredients in sandrice, whereby isorhamnetin and isorhamnetin-3-glycoside were the top two flavonols with multiple health benefits. However, the molecular regulatory mechanisms of flavonoids in sandrice remain largely unclear. Based on a common garden trial, in this study, an integrated transcriptomic and flavonoids-targeted metabolomic analysis was performed on the vegetative and reproductive periods of six sandrice ecotypes, whose original habitats covered a variety of environmental factor gradients. Multiple linear stepwise regression analysis unveiled that flavonoid accumulation in sandrice was positively correlated with temperature and UVB and negatively affected by precipitation and sunshine duration, respectively. Weighted co-expression network analysis (WGCNA) indicated the bHLH and MYB transcription factor (TF) families might play key roles in sandrice flavonoid biosynthesis regulation. A total of 22,778 differentially expressed genes (DEGs) were identified between ecotype DL and ecotype AEX, the two extremes in most environmental factors, whereby 85 DEGs could be related to known flavonoid biosynthesis pathway. A sandrice flavonoid biosynthesis network embracing the detected 23 flavonoids in this research was constructed. Gene families Plant flavonoid O-methyltransferase (AsPFOMT) and UDP-glucuronosyltransferase (AsUGT78D2) were identified and characterized on the transcriptional level and believed to be synthases of isorhamnetin and isorhamnetin-3-glycoside in sandrice, respectively. A trade-off between biosynthesis of rutin and isorhamnetin was found in the DL ecotype, which might be due to the metabolic flux redirection when facing environmental changes. This research provides valuable information for understanding flavonoid biosynthesis in sandrice at the molecular level and laid the foundation for precise development and utilization of this functional resource forage.

5.
Brain Res ; 1797: 148116, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36209898

RESUMEN

Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.

6.
Pathol Res Pract ; 234: 153894, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35489123

RESUMEN

Macrophages substantially influence the development, progression, and complications of inflammation-driven diseases. Although numerous studies support the critical role of Notch signaling in most inflammatory diseases, there is limited data on the role of Notch signaling in TLR4-induced macrophage activation and interaction of Notch signaling with other signaling pathways in macrophages during inflammation, such as the NF-κB pathway. This study confirmed that stimulation with lipopolysaccharide (LPS), a TLR4 ligand, upregulated Notch1 expression in monocyte/macrophage-like RAW264.7 cells and bone marrow-derived macrophages (BMDMs). LPS also induced increased mRNA expression of Notch target genes Notch1 and Hes1 in macrophages, suggesting that TLR4 signaling enhances activation of the Notch pathway. The upregulation of Notch1, Notch1 intracellular domain (NICD), and Hes1 proteins by LPS treatment was inhibited by DAPT, a Notch1 inhibitor. Additionally, the increased TNF-α, IL-6, and IL-1ß expression induced by LPS was inhibited by DAPT and rescued by jagged1, a Notch1 ligand. Furthermore, suppression of Notch signaling by DAPT upregulated Cylindromatosis (CYLD) expression but downregulated TRAF6 expression, IκB kinase (IKK) α/ß phosphorylation, and subsequently, phosphorylation and degradation of IκB-α, indicating that DAPT inhibited NF-κB activation triggered by TLR-4. Interestingly, DAPT did not inhibit the increased MyD88 expression induced by LPS. Our study findings demonstrate that macrophage stimulation via the TLR4 signaling cascade triggers activation of Notch1 signaling, which regulates the expression patterns of genes involved in pro-inflammatory responses by activating NF-κB. This effect may be dependent on the CYLD-TRAF6-IKK pathway. Thus, Notch1 signaling may provide a therapeutic target against infectious and inflammation-driven diseases.


Asunto(s)
FN-kappa B , Receptor Toll-Like 4 , Humanos , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Ligandos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , FN-kappa B/metabolismo , Inhibidores de Agregación Plaquetaria/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Receptor Notch1/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/farmacología , Receptor Toll-Like 4/genética
7.
AoB Plants ; 14(1): plab060, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35047161

RESUMEN

Tamarix ramosissima is a typical desert plant species that is widely distributed in the desert areas of Northwest China. It plays a significant role in sand fixation and soil water conservation. In particular, how it uses water to survive in the desert plays an important role in plant growth and ecosystem function. Previous studies have revealed that T. ramosissima can alleviate drought by absorbing water from its leaves under extreme drought conditions. To date, there is no clear molecular regulation mechanism to explain foliar water uptake (FWU). In the present study, we correlated diurnal meteorological data, sap flow and photosynthetic parameters to determine the physical and biological characteristics of FWU. Our results suggested that the lesser the groundwater, the easier it is for T. ramosissima to absorb water via the leaves. Gene ontology annotation and Kyoto Encyclopaedia of Genes and Genomes pathway analysis of the transcriptome profile of plants subjected to high humidity suggested that FWU was highly correlated to carbohydrate metabolism, energy transfer, pyruvate metabolism, hormone signal transduction and plant-pathogen interaction. Interestingly, as a C3 plant, genes such as PEPC, PPDK, MDH and RuBP, which are involved in crassulacean acid metabolism (CAM) photosynthesis, were highly upregulated and accompanied by FWU. Therefore, we proposed that in the case of sufficient water supply, C3 photosynthesis is used in T. ramosissima, whereas in cases of extreme drought, starch is degraded to provide CO2 for CAM photosynthesis to make full use of the water obtained via FWU and the water that was transported or stored to assimilating branches and stems. This study may provide not only an important theoretical foundation for FWU and conversion from C3 plants to CAM plants but also for engineering improved photosynthesis in high-yield drought-tolerant plants and mitigation of climate change-driven drought.

8.
Front Plant Sci ; 12: 683265, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354722

RESUMEN

Agriophyllum squarrosum (L.) Moq., a pioneer plant endemic to the temperate deserts of Asia, could be domesticated into an ideal crop with outstanding ecological and medicinal characteristics. A previous study showed differential flavonoid accumulation between two in situ altitudinal ecotypes. To verify whether this accumulation was determined by environmental or genetic factors, we conducted flavonoid-targeted metabolic profiling among 14 populations of A. squarrosum collected from regions with different altitudes based on a common garden experiment. Results showed that the most abundant flavonoid in A. squarrosum was isorhamnetin (48.40%, 557.45 µg/g), followed by quercetin (13.04%, 150.15 µg/g), tricin (11.17%, 128.70 µg/g), isoquercitrin (7.59%, 87.42 µg/g), isovitexin (7.20%, 82.94 µg/g), and rutin (7.00%, 80.62 µg/g). However, based on a common garden at middle-altitude environment, almost none of the flavonoids was enriched in the high-altitude populations, and even some flavonoids, such as quercetin, tricin, and rutin, were significantly enriched in low-altitude populations. This phenomenon indicated that the accumulation of flavonoids was not a result of local adaptation to high altitude. Furthermore, association analysis with in situ environmental variables showed that the contents of quercetin, tricin, and rutin were strongly positively correlated with latitude, longitude, and precipitation gradients and negatively correlated with temperature gradients. Thus, we could conclude that the accumulations of flavonoids in A. squarrosum were more likely as a result of local adaption to environmental heterogeneity combined with precipitation and temperature other than high altitude. This study not only provides an example to understand the molecular ecological basis of pharmacognosy, but also supplies methodologies for developing a new industrial crop with ecological and agricultural importance.

9.
J Plant Res ; 134(5): 999-1011, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34308491

RESUMEN

Agriophyllum squarrosum (L.) Moq., a pioneer plant endemic to the temperate deserts of Asia, could be domesticated into an ideal crop with outstanding ecological and medicinal characteristics. A previous study showed differential organic acid accumulation between two in situ altitudinal ecotypes. To verify whether this accumulation was determined by environmental or genetic factors, we conducted organic acid targeted metabolic profiling among 14 populations of A. squarrosum collected from regions with different altitudes based on a common garden experiment. Results showed that the most abundant organic acid in A. squarrosum was citric acid (96.03%, 2322.90 µg g-1). Association analysis with in situ environmental variables showed that salicylic acid content was positively correlated with altitudinal gradient. Considering the enrichment of salicylic acid and protocatechualdehyde in high-altitude populations based on the common garden experiment, and the high expression of their biosynthesis relative genes (i.e., PAL and C4H) in the in situ high-altitude ecotype, we propose that organic acid accumulation could be involved in local adaptation to high altitudes. This study not only addresses the molecular basis of local adaptation involving the accumulation of organic acids in the desert plant A. squarrosum but also provides a method to screen wild germplasms to mitigate the impact of global climate change.


Asunto(s)
Chenopodiaceae , Plantas Medicinales , Aclimatación , Adaptación Fisiológica , Altitud , Cambio Climático
10.
Front Genet ; 12: 656061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995487

RESUMEN

Natural selection is a significant driver of population divergence and speciation of plants. Due to local adaptation to geographic regions with ecological gradients, plant populations harbored a wide range of adaptive genetic variation to enable them to survive the heterogeneous habitats. This is all the more necessary for desert plants, as they must tolerant more striking gradients of abiotic stresses. However, the genomic mechanism by which desert plants adapt to ecological heterogeneity remains unclear, which could help to guide the sustainability of desert ecosystems. Here, using restriction-site-associated DNA sequencing in 38 natural populations, we investigated the genomic divergence and environmental adaptation of sand rice, Agriophyllum squarrosum, an annual pioneer species that covers sand dunes in northern China. Population genetic structure analyses showed that sand rice could be divided into three geographically distinct lineages, namely, Northwest, Central, and East. Phylogeographic analyses revealed that the plant might originate locally in Bergen County and further differentiated into the East lineage and then the Central lineage. Ecological niche modeling found that different lineages occupied distinct ecological niches, suggesting that the ecological gradient would have triggered genomic differentiation among sand rice lineages. Ecological association study supported that the three SNPs under divergent selection were closely correlated with precipitation gradients, indicating that precipitation might be the most important stress trigger for lineage diversity in sand rice. These adaptive SNPs could be used to genotype suitable germplasms for the ecological restoration of specific desertified lands. Further analyses found that genetic structure could significantly overestimate the signals for balancing selection. Within the Central lineage, we still found that 175 SNPs could be subject to balancing selection, which could be the means by which sand rice maintains genetic diversity and adapts to multiple stresses across heterogeneous deserts and sandy lands. From a genomic point of view, this study highlighted the local and global adaptation patterns of a desert plant to extreme and heterogeneous habitats. Our data provide molecular guidance for the restoration of desertified lands in the arid and semi-arid regions of China and could facilitate the marker assistant breeding of this potential crop to mitigate climate change.

11.
Bull Environ Contam Toxicol ; 106(3): 528-535, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33661312

RESUMEN

Phytoremediation is a green, simple, eco-friendly, sustainable, and cost-effective remediation technology to remove and degrade contaminants from soil. In this study, a germination experiment and a pot experiment were performed in greenhouse to evaluate cadmium toxicity and phytoremediation capacity. The results showed that there was the highest membership function value of cadmium (MFVC) in KFJT-3 than that of KFJT-CK and KFJT-1, the value being 0.473, 0.456 and 0.413, respectively. Furthermore, the highest biomass was discovered in KFJT-3 compared to the other genotypes under 50 mg/kg cadmium stress. Physiological analysis showed that proline content significantly increased in KFJT-3, the value being 31.88%. In addition, Bioaccumulation factor (BAF) and Translocation factor (TF) value were 3.80 and 1.02 for KFJT-3, respectively. In conclusion, BAF and TF values showed that the cadmium tolerance of KFJT-1 and KFJT-3 could be higher than that of KFJT-CK, which could be the genotype for phytoremediation of cadmium contaminated soil.


Asunto(s)
Contaminantes del Suelo , Sorghum , Biodegradación Ambiental , Cadmio/análisis , Cadmio/toxicidad , Raíces de Plantas/química , Prolina , Plantones/química , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
12.
J Craniofac Surg ; 31(8): 2355-2359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33136890

RESUMEN

Tissue engineering cartilage is a promising strategy to reconstruct the craniofacial cartilaginous defects. It demands plenty of chondrocytes to generate human-sized craniofacial frameworks. Partly replacement of chondrocytes by adipose-derived stem cells (ADSCs) can be an alternative strategy.The study aimed at evaluating the chondrogenic outcome of ADSCs and chondrocytes in direct co-culture with transforming growth factor-beta (TGF-ß3). Porcine ADSCs and chondrocytes were obtained from abdominal wall and external ears. Four groups: ADSCs or chondrocytes monocultured in medium added with TGF-ß3; ADSCs and ACs co-cultured with or without TGF-ß3. Cell growth rate was performed to evaluate the cell proliferation. Morphological, histologic and real-time polymerase chain reaction analysis were performed to characterize the chondrogenic outcome of pellets. ADSCs had favorable multi-lineage differentiation potential. Further, when ADSCs were co-cultured with chondrocytes in medium added with TGF-ß3, the cell proliferation was promoted and the chondrogenic differentiation of ADSCs was enhanced. We demonstrate that pellet co-culture of ADSCs and chondrocyte with TGF-ß3 could construct high quantity cartilages. It suggests that this strategy might be useful in future cartilage repair.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Condrocitos/citología , Células Madre/citología , Factor de Crecimiento Transformador beta3/farmacología , Adipocitos/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Animales , Diferenciación Celular , Proliferación Celular , Condrocitos/efectos de los fármacos , Condrogénesis , Técnicas de Cocultivo , Células Madre/efectos de los fármacos , Porcinos , Ingeniería de Tejidos
13.
Ecol Evol ; 10(18): 10076-10094, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005365

RESUMEN

The climate in arid Central Asia (ACA) has changed rapidly in recent decades, but the ecological consequences of this are far from clear. To predict the impacts of climate change on ecosystem functioning, greater attention should be given to the relationships between leaf functional traits and environmental heterogeneity. As a dominant constructive shrub widely distributed in ACA, Reaumuria soongarica provided us with an ideal model to understand how leaf functional traits of desert ecosystems responded to the heterogeneous environments of ACA. Here, to determine the influences of genetic and ecological factors, we characterized species-wide variations in leaf traits among 30 wild populations of R. soongarica and 16 populations grown in a common garden. We found that the leaf length, width, and leaf length to width ratio (L/W) of the northern lineage were significantly larger than those of other genetic lineages, and principal component analysis based on the in situ environmental factors distinguished the northern lineage from the other lineages studied. With increasing latitude, leaf length, width, and L/W in the wild populations increased significantly. Leaf length and L/W were negatively correlated with altitude, and first increased and then decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). Stepwise regression analyses further indicated that leaf length variation was mainly affected by latitude. However, leaf width was uncorrelated with altitude, MAT, or MAP. The common garden trial showed that leaf width variation among the eastern populations was caused by both local adaptation and phenotypic plasticity. Our findings suggest that R. soongarica preferentially changes leaf length to adjust leaf size to cope with environmental change. We also reveal phenotypic evidence for ecological speciation of R. soongarica. These results will help us better understand and predict the consequences of climate change for desert ecosystem functioning.

14.
Plants (Basel) ; 9(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867062

RESUMEN

The influence of Quaternary climate fluctuation on the geographical structure and genetic diversity of species distributed in the regions of the Qinghai-Tibet Plateau (QTP) has been well established. However, the underlying role of the East Asian monsoon system (EAMS) in shaping the genetic structure of the population and the demography of plants located in the arid northwest of China has not been explored. In the present study, Nitraria tangutorum, a drought-tolerant desert shrub that is distributed in the EAMS zone and has substantial ecological and economic value, was profiled to better understand the influence of EAMS evolution on its biogeographical patterns and demographic history. Thus, the phylogeographical structure and historical dynamics of this plant species were elucidated using its five chloroplast DNA (cpDNA) fragments. Hierarchical structure analysis revealed three distinct, divergent lineages: West, East-A, and East-B. The molecular dating was carried out using a Bayesian approach to estimate the time of intraspecies divergence. Notably, the eastern region, which included East-A and East-B lineages, was revealed to be the original center of distribution and was characterized by a high level of genetic diversity, with the intraspecific divergence time dated to be around 2.53 million years ago (Ma). These findings, combined with the data obtained by ecological niche modeling analysis, indicated that the East lineages have undergone population expansion and differentiation, which were closely correlated with the development of the EAMS, especially the East Asian winter monsoon (EAWM). The West lineage appears to have originated from the migration of N. tangutorum across the Hexi corridor at around 1.85 Ma, and subsequent colonization of the western region. These results suggest that the EAWM accelerated the population expansion of N. tangutorum and subsequent intraspecific differentiation. These findings collectively provide new information on the impact of the evolution of the EAMS on intraspecific diversification and population demography of drought-tolerant plant species in northwest China.

15.
Zhen Ci Yan Jiu ; 45(3): 188-93, 2020 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-32202709

RESUMEN

OBJECTIVE: To observe the effect of medicated thread moxibustion of Zhuang Minority medicine on helper T cell 17 (Th17)/ Interleukin-17F(IL-17F) signaling pathway in ulcerative colitis (UC) rats, so as to explore its mechanisms underlying improvement of UC. METHODS: Forty male SD rats were randomly divided into normal control, model, medication and medicated thread moxibustion (MTM) groups, with 10 rats in each group. The UC model was induced by free drinking of 4% dextran sulfate sodium (DSS) for 10 d. After successful modeling, rats of the medication group were treated by gavage of salazosulfapyridine (SASP). Medicated thread moxibustion was applied to unilateral "Tianshu" (ST25) and "Qihai" (CV6) alternatively for rats of the MTM group, once daily for 14 d. The body mass, stool shape, and fecal occult test were recorded and conducted daily to perform disease activity index (DAI) score. H.E. staining was used to display pathological changes of the colon tissue. The Th17 cells and IL-17F and retinoic acid related orphan receptor γ t (ROR-γt) in the colon tissue were detected by flow cytometry, and enzyme-linked immunosorbent assay (ELISA), respectively, and the expression levels of RORγt and IL-17F mRNA in colon tissue were detected by quantitive real-time PCR. RESULTS: After modeling, the DAI score, colonic Th17 percentage, RORγt and IL-17F contents, and RORγt and IL-17F mRNA expression were significantly increased in the model group in contrast to the normal control group (P<0.01, P<0.05). Following the intervention, all the aforementioned indexes were reversed in both medication and MTM groups (P<0.01, P<0.05). No significant differences were found between the medication and MTM groups in the levels of the above mentioned indexes (P>0.05, except RORγt and IL-17F mRNA expression). H.E. staining showed disappearance of goblet cells, infiltration of a large number of inflammatory cells, exfoliation of the epithelial tissue and edema of colonic mucosal in rats of the model group, which was relatively milder in both medication and MTM groups. CONCLUSION: Medicated thread moxibustion of Zhuang Minority medicine can reduce the inflammatory damage of colon tissue in UC rats, which is associated with its effects in suppressing the expression of RORγt, production of Th17 cells, and secretion of pro-inflammatory factor IL-17F in colon tissue.


Asunto(s)
Colitis Ulcerosa , Moxibustión , Animales , Interleucina-17 , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Células Th17
16.
Heredity (Edinb) ; 124(1): 62-76, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527784

RESUMEN

Flowering time is one of the most critical traits for plants' life cycles, which is influenced by various environment changes, such as global warming. Previous studies have suggested that to guarantee reproductive success, plants have shifted flowering times to adapt to global warming. Although many studies focused on the molecular mechanisms of early flowering, little was supported by the repeated sampling at different time points through the changing climate. To fully dissect the temporal and spatial evolutionary genetics of flowering time, we investigated nucleotide variation in ten flowering time candidate genes and nine reference genes for the same ten wild-barley populations sampled 28 years apart (1980-2008). The overall genetic differentiation was significantly greater in the descendant populations (2008) compared with the ancestral populations (1980); however, local adaptation tests failed to detect any single-nucleotide polymorphism (SNP)/indel under spatial-diversifying selection at either time point. By contrast, the WFABC (Wright-Fisher ABC-based approach) that detected 54 SNPs/indels was under strong selection during the past 28 generations. Moreover, all these 54 alleles were segregated in the ancestral populations, but fixed in the descendent populations. Among the top ten SNPs/indels, seven were located in genes of FT1 (FLOWERING TIME LOCUS T 1), CO1 (CONSTANS-LIKE PROTEIN 1), and VRN-H2 (VERNALIZATION-H2), which have been documented to be associated with flowering time regulation in barley cultivars. This study might suggest that all ten populations have undergone parallel evolution over the past few decades in response to global warming, and even an overwhelming local adaptation and ecological differentiation.


Asunto(s)
Adaptación Fisiológica/genética , Flores/fisiología , Hordeum/genética , Selección Genética , Alelos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genética de Población , Hordeum/fisiología , Mutación INDEL , Israel , Polimorfismo de Nucleótido Simple
17.
Front Genet ; 9: 506, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30487810

RESUMEN

As one of the hotspot regions for sympatric speciation studies, Evolution Canyon (EC) became an ideal place for its high level of microclimatic divergence interslopes. In this study, to highlight the genetic mechanisms of sympatric speciation, phenotypic variation on flowering time and transcriptomic divergence were investigated between two ecotypes of Ricotia lunaria, which inhabit the opposite temperate and tropical slopes of EC I (Lower Nahal Oren, Mount Carmel, Israel) separated by 100 m at the bottom of the slopes. Growth chamber results showed that flowering time of the ecotype from south-facing slope population # 3 (SFS 3) was significantly 3 months ahead of the north-facing slope population # 5 (NFS 5). At the same floral development stage, transcriptome analysis showed that 1,064 unigenes were differentially expressed between the two ecotypes, which enriched in the four main pathways involved in abiotic and/or biotic stresses responses, including flavonoid biosynthesis, α-linolenic acid metabolism, plant-pathogen interaction and linoleic acid metabolism. Furthermore, based on Ka/Ks analysis, nine genes were suggested to be involved in the ecological divergence between the two ecotypes, whose homologs functioned in RNA editing, ABA signaling, photoprotective response, chloroplasts protein-conducting channel, and carbohydrate metabolism in Arabidopsis thaliana. Among them, four genes, namely, SPDS1, FCLY, Tic21 and BGLU25, also showed adaptive divergence between R. lunaria and A. thaliana, suggesting that these genes could play an important role in plant speciation, at least in Brassicaceae. Based on results of both the phenotype of flowering time and comparative transcriptome, we hypothesize that, after long-time local adaptations to their interslope microclimatic environments, the molecular functions of these nine genes could have been diverged between the two ecotypes. They might differentially regulate the expression of the downstream genes and pathways that are involved in the interslope abiotic stresses, which could further diverge the flowering time between the two ecotypes, and finally induce the reproductive isolation establishment by natural selection overruling interslope gene flow, promoting sympatric speciation.

18.
Electron. j. biotechnol ; 35: 48-56, sept. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1047771

RESUMEN

Background: Tamarix ramosissima is a desert forest tree species that is widely distributed in the drought-stricken areas to sustain the fragile ecosystem. Owing to its wide usage in the desert restoration of Asia, it can be used as an ecophysiological model plant. To obtain reliable and accurate results, a set of reference genes should be screened before gene expression. However, up to date, systematical evaluation of reference genes has not been conducted in T. ramosissima. Results: In this study, we used eigenvalues derived from principal component analysis to identify stable expressed genes from 72,035 unigenes from diurnal transcriptomes under natural field conditions. With combined criteria of read counts above 900 and CV of FPKM below 0.3, a total of 7385 unigenes could be qualified as candidate reference genes in T. ramosissima. By using three statistical algorithm packages, geNorm, NormFinder, and BestKeeper, the stabilities of these novel reference genes were further compared with a panel of traditional reference genes. The expression patterns of three aquaporins (AQPs) suggested that at least UBQ (high expression), EIF4A2 (low expression), and GAPDH (moderate expression) could be qualified as ideal reference genes in both RT-PCR and RNA-seq analysis of T. ramosissima. Conclusions: This work will not only facilitate future studies on gene expression and functional analysis of genetic resources of desert plants but also improve our understanding of the molecular regulation of water transport in this plant, which could provide a new clue to further investigate the drought adaptation mechanism of desert plant species under harsh environments.


Asunto(s)
Tamaricaceae/genética , Transcriptoma , Estándares de Referencia , Adaptación Biológica , Expresión Génica , Ecosistema , Hojas de la Planta/genética , Desierto , Restauración y Remediación Ambiental , Sequías , Reacción en Cadena en Tiempo Real de la Polimerasa , RNA-Seq
19.
PLoS One ; 12(8): e0183778, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28859098

RESUMEN

Braya humilis is a member of the Euclidieae tribe within the family Brassicaceae. This species exhibits a broad range of adaptations to different climatic zones and latitudes as it has a distribution that ranges from northern Asia to the arctic-alpine regions of northern North America. In China, B. humilis is mainly found on the Qinghai-Tibetan Plateau (QTP) and in adjacent arid regions. In this study, we sequenced a sample from an arid region adjacent to the QTP using the Illumina platform generating a total of 46,485 highly accurate unigenes, of which 78.41% were annotated by BLASTing versus public protein databases. The B. humilis transcriptome is characterized by a high level of sequence conservation compared with its close relative, Arabidopsis thaliana. We also used reciprocal blast to identify shared orthologous genes between B. humilis and four other sequenced Brassicaceae species (i.e. A. thaliana, A. lyrata, Capsella rubella, and Thellungiella parvula). To enable precise characterization of orthologous genes, the early-diverging basal angiosperm Amborella trichopoda was also included. A total of 6,689 orthologous genes were identified before stricter criteria for the determination of e-values, amino acid hit lengths, and identity values was applied to further reduce this list. This led to a final list of 381 core orthologous genes for B. humilis; 39 out of these genes are involved in salt and osmotic stress responses and estimations of nonsynonymous/synonymous substitution ratios for this species and A. thaliana orthologs show that these genes are under purifying selection in B. humilis. Expression of six genes was detected in B. humilis seedlings under salt and osmotic stress treatments. Comparable expression patterns to their counterparts in Arabidopsis suggest that these orthologous genes are both sequence and functional conservation. The results of this study demonstrate that the environmental adaptations of B. humilis are mainly the results of preexisting genetic components. Future work will be required to characterize the expression patterns of these orthologous genes in natural populations and will provide further insights into the adaptive mechanisms underlying the wide range of B. humilis adaptations.


Asunto(s)
Brassicaceae/genética , Evolución Molecular , Plantas Tolerantes a la Sal/genética , Transcriptoma/genética , Adaptación Fisiológica/genética , Arabidopsis/genética , Regiones Árticas , China , Clima Desértico , Regulación de la Expresión Génica de las Plantas , Osmorregulación/genética , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Cloruro de Sodio/efectos adversos
20.
Front Plant Sci ; 8: 536, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28439286

RESUMEN

The extreme stress tolerance and high nutritional value of sand rice (Agriophyllum squarrosum) make it attractive for use as an alternative crop in response to concerns about ongoing climate change and future food security. However, a lack of genetic information hinders understanding of the mechanisms underpinning the morphological and physiological adaptations of sand rice. In the present study, we sequenced and analyzed the transcriptomes of two individuals representing semi-arid [Naiman (NM)] and arid [Shapotou (SPT)] sand rice genotypes. A total of 105,868 pairwise single nucleotide polymorphisms (SNPs) distributed in 24,712 Unigenes were identified among SPT and NM samples; the average SNP frequency was 0.3% (one SNP per 333 base pair). Characterization of gene annotation demonstrated that variations in genes involved in DNA recombination were associated with the survival of the NM population in the semi-arid environment. A set of genes predicted to be relevant to heat stress response and agronomic traits was functionally annotated using the accumulated knowledge from Arabidopsis and several crop plants, including rice, barley, maize, and sorghum. Four candidate genes related to heat tolerance (heat-shock transcription factor, HsfA1d), seed size (DA1-Related, DAR1), and flowering (early flowering 3, ELF3 and late elongated hypocotyl, LHY) were subjected to analysis of the genetic diversity in 10 natural populations, representing the core germplasm resource across the area of sand rice distribution in China. Only one SNP was detected in each of HsfA1d and DAR1, among 60 genotypes, with two in ELF3 and four in LHY. Nucleotide diversity ranged from 0.00032 to 0.00118. Haplotype analysis indicated that the NM population carried a specific allele for all four genes, suggesting that divergence has occurred between NM and other populations. These four genes could be further analyzed to determine whether they are associated with phenotype variation and identify alleles favorable for sand rice breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...