Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Microbiol Spectr ; : e0430723, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38916339

Mycophenolate mofetil (MMF) is commonly utilized for the treatment of neuromyelitis optica spectrum disorders (NMOSD). However, a subset of patients experience significant gastrointestinal (GI) adverse effects following MMF administration. The present study aims to elucidate the underlying mechanisms of MMF-induced GI toxicity in NMOSD. Utilizing a vancomycin-treated mouse model, we compiled a comprehensive data set to investigate the microbiome and metabolome in the GI tract to elucidate the mechanisms of MMF GI toxicity. Furthermore, we enrolled 17 female NMOSD patients receiving MMF, who were stratified into non-diarrhea NMOSD and diarrhea NMOSD (DNM) groups, in addition to 12 healthy controls. The gut microbiota of stool samples was analyzed using 16S rRNA gene sequencing. Vancomycin administration prevented weight loss and tissue injury caused by MMF, affecting colon metabolomes and microbiomes. Bacterial ß-glucuronidase from Bacteroidetes and Firmicutes was linked to intestinal tissue damage. The DNM group showed higher alpha diversity and increased levels of Firmicutes and Proteobacteria. The ß-glucuronidase produced by Firmicutes may be important in causing gastrointestinal side effects from MMF in NMOSD treatment, providing useful information for future research on MMF. IMPORTANCE: Neuromyelitis optica spectrum disorder (NMOSD) patients frequently endure severe consequences like paralysis and blindness. Mycophenolate mofetil (MMF) effectively addresses these issues, but its usage is hindered by gastrointestinal (GI) complications. Through uncovering the intricate interplay among MMF, gut microbiota, and metabolic pathways, this study identifies specific gut bacteria responsible for metabolizing MMF into a potentially harmful form, thus contributing to GI side effects. These findings not only deepen our comprehension of MMF toxicity but also propose potential strategies, such as inhibiting these bacteria, to mitigate these adverse effects. This insight holds broader implications for minimizing complications in NMOSD patients undergoing MMF therapy.

2.
Appl Opt ; 63(8): 1947-1951, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38568633

Three samples whose growth temperatures were 450°C, 500°C, and 560°C for S E S A M 1, S E S A M 2, and S E S A M 3, respectively, were tested by femto-second time-resolved transient absorption spectroscopy. The results indicate that the carrier dynamics of excited state absorption were dominant, and the lifetimes of carriers trapped by defect levels were about tens of pico-seconds. To further study the influence of carrier dynamics and recovery time of samples by ion-implantation, B + ions of 80 and 130 KeV were implanted into the samples with dose of 1014/c m 2. The modified samples showed a dominance of ultra-fast carrier dynamics of ground-state bleaching and direct recombination, which lasted for hundreds of femto-seconds, over excited state absorption. Additionally, carrier fast trapping was observed to be competitive with the excited state absorption process. After ion-implantation, the carrier dynamics of carrier trapping were enhanced, which contributed to forming an ultra-short laser, while the carrier dynamics of absorption of the excited state were suppressed. The conclusion that defect levels were partially eliminated by B + ion-implantation can be drawn.

5.
Acta Pharmacol Sin ; 45(5): 890-899, 2024 May.
Article En | MEDLINE | ID: mdl-38177693

Cytosolic double-stranded DNA (dsDNA) is frequently accumulated in cancer cells due to chromosomal instability or exogenous stimulation. Cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, which is activated upon binding to dsDNA to synthesize the crucial second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP) that in turn triggers stimulator of interferon genes (STING) signaling. The canonical role of cGAS-cGAMP-STING pathway is essential for innate immunity and viral defense. Recent emerging evidence indicates that 2'3'-cGAMP plays an important role in cancer progression via cell autonomous and non-autonomous mechanisms. Beyond its role as an intracellular messenger to activate STING signaling in tumor cells, 2'3'-cGAMP also serves as an immunotransmitter produced by cancer cells to modulate the functions of non-tumor cells especially immune cells in the tumor microenvironment by activating STING signaling. In this review, we summarize the synthesis, transmission, and degradation of 2'3'-cGAMP as well as the dual functions of 2'3'-cGAMP in a STING-dependent manner. Additionally, we discuss the potential therapeutic strategies that harness the cGAMP-mediated antitumor response for cancer therapy.


Neoplasms , Nucleotides, Cyclic , Humans , Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/pathology , Nucleotides, Cyclic/metabolism , Animals , Second Messenger Systems , Membrane Proteins/metabolism , Signal Transduction , Disease Progression , Tumor Microenvironment/immunology , Nucleotidyltransferases/metabolism
6.
Plants (Basel) ; 12(22)2023 Nov 07.
Article En | MEDLINE | ID: mdl-38005683

Mangrove plants demonstrate an impressive ability to tolerate environmental pollutants, but excessive levels of cadmium (Cd) can impede their growth. Few studies have focused on the effects of apoplast barriers on heavy metal tolerance in mangrove plants. To investigate the uptake and tolerance of Cd in mangrove plants, two distinct mangrove species, Avicennia marina and Rhizophora stylosa, are characterized by unique apoplast barriers. The results showed that both mangrove plants exhibited the highest concentration of Cd2+ in roots, followed by stems and leaves. The Cd2+ concentrations in all organs of R. stylosa consistently exhibited lower levels than those of A. marina. In addition, R. stylosa displayed a reduced concentration of apparent PTS and a smaller percentage of bypass flow when compared to A. marina. The root anatomical characteristics indicated that Cd treatment significantly enhanced endodermal suberization in both A. marina and R. stylosa roots, and R. stylosa exhibited a higher degree of suberization. The transcriptomic analysis of R. stylosa and A. marina roots under Cd stress revealed 23 candidate genes involved in suberin biosynthesis and 8 candidate genes associated with suberin regulation. This study has confirmed that suberized apoplastic barriers play a crucial role in preventing Cd from entering mangrove roots.

7.
Neurotherapeutics ; 20(5): 1405-1426, 2023 09.
Article En | MEDLINE | ID: mdl-37596429

Accumulating data support a crucial role of gut microbiota in Parkinson's disease (PD). However, gut microbiota vary with age and, thus, will affect PD in an age-dependent, but unknown manner. We examined the effects of fecal microbiota transplantation (FMT) pretreatment, using fecal microbiota from young (7 weeks) or aged mice (23 months), on MPTP-induced PD model. Motor function, pathological changes, striatal neurotransmitters, neuroinflammation, gut inflammation and gut permeability were examined. Gut microbiota composition and metabolites, namely short-chain fatty acids (SCFAs), were analyzed. Neurogenesis was also evaluated by measuring the number of doublecortin-positive (DCX+) neurons and Ki67-positive (Ki67+) cells in the hippocampus. Expression of Cd133 mRNA, a cellular stemness marker, in the hippocampus was also examined. Mice who received FMT from young mice showed MPTP-induced motor dysfunction, and reduction of striatal dopamine (DA), dopaminergic neurons and striatal tyrosine hydroxylase (TH) levels. Interestingly and unexpectedly, mice that received FMT from aged mice showed recovery of motor function and rescue of dopaminergic neurons and striatal 5-hydroxytryptamine (5-HT), as well as decreased DA metabolism after MPTP challenge. Further, they showed improved metabolic profiling and a decreased amount of fecal SCFAs. High-throughput sequencing revealed that FMT remarkably reshaped the gut microbiota of recipient mice. For instance, levels of genus Akkermansia and Candidatus Saccharimonas were elevated in fecal samples of recipient mice receiving aged microbiota (AM + MPTP mice) than YM + MPTP mice. Intriguingly, both young microbiota and aged microbiota had no effect on neuroinflammation, gut inflammation or gut permeability. Notably, AM + MPTP mice showed a marked increase in DCX+ neurons, as well as Ki67+ cells and Cd133 expression in the hippocampal dentate gyrus (DG) compared to YM + MPTP mice. These results suggest that FMT from aged mice augments neurogenesis, improves motor function and restores dopaminergic neurons and neurotransmitters in PD model mice, possibly through increasing neurogenesis.


Fecal Microbiota Transplantation , Parkinson Disease , Animals , Mice , Neuroinflammatory Diseases , Ki-67 Antigen , Inflammation , Dopaminergic Neurons , Neurogenesis
8.
World J Pediatr ; 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37486441

BACKGROUND: The clinical manifestations of nonclassical 11beta-hydroxylase deficiency are very similar to those of non-classical 21-hydroxylase deficiency. For this study, we investigated the relationship between the clinical and molecular features of congenital adrenal hyperplasia caused by 11beta-hydroxylase deficiency and reviewed the related literature, which are expected to provide assistance for the clinical diagnosis and analysis of congenital adrenal hyperplasia. METHODS: Clinical data for 10 Chinese patients diagnosed with congenital adrenal hyperplasia in our hospital from 2018 to 2022 were retrospectively analyzed. We examined the effects of gene mutations on protease activity and constructed three-dimensional structure prediction models of proteins. RESULTS: We describe 10 patients with 11beta-hydroxylase gene mutations (n = 5, 46,XY; n = 5, 46,XX), with 10 novel mutations were reported. Female patients received treatment at an early stage, with an average age of 2.08 ± 1.66 years, whereas male patients received treatment significantly later, at an average age of 9.77 ± 3.62 years. The most common CYP11B1 pathogenic variant in the Chinese population was found to be c.1360C > T. All mutations lead to spatial conformational changes that affect protein stability. CONCLUSIONS: Our study found that there was no significant correlation between each specific mutation and the severity of clinical manifestations. Different patients with the same gene pathogenic variant may have mild or severe clinical manifestations. The correlation between genotype and phenotype needs further study. Three-dimensional protein simulations may provide additional support for the physiopathological mechanism of genetic mutations.

9.
Theriogenology ; 207: 82-95, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37269599

In recent years, sex-controlled breeding has emerged as an effective strategy to enhance the yields of economic animals with different growth characteristics, while increasing the economic benefits of aquaculture. It is known that the NF-κB pathway participates in gonadal differentiation and reproduction. Therefore, we used the large-scale loach as a research model for the present study and selected an effective inhibitor of the NF-κB signaling pathway (QNZ). This, to investigates the impacts of the NF-κB signaling pathway on gonadal differentiation during a critical period of gonad development and after maturation. Simultaneously, the sex ratio bias and the reproductive capacities of adult fish were analyzed. Our results indicated that the inhibition of the NF-κB signaling pathway influenced the expression of genes related to gonad development, regulated the gene expression related to the brain-gonad-liver axis of juvenile loaches, and finally impacted the gonadal differentiation of the large-scale loach and promoted a male-biased sex ratio. Meanwhile, high QNZ concentrations affected the reproductive abilities of adult loaches and inhibited the growth performance of offspring. Thus, our results deepened the exploration of sex control in fish and provided a certain research basis for the sustainable development of the aquaculture industry.


Cypriniformes , NF-kappa B , Male , Animals , NF-kappa B/metabolism , Gonads/metabolism , Signal Transduction , Sex Differentiation/genetics , Cypriniformes/genetics , Cypriniformes/metabolism
10.
Polymers (Basel) ; 15(7)2023 Mar 31.
Article En | MEDLINE | ID: mdl-37050365

Photothermal therapy directly acting on the nucleus is a potential anti-tumor treatment with higher killing efficiency. However, in practical applications, it is often difficult to achieve precise nuclear photothermal therapy because agents are difficult to accurately anchor to the nucleus. Therefore, it is urgent to develop a nanoheater that can accurately locate the nucleus. Here, we designed an amphiphilic arginine-rich dendritic peptide (RDP) with the sequence CRRK(RRCG(Fmoc))2, and prepared a nucleus-targeting nanoplatform RDP/I by encapsulating the photothermal agent IR780 in RDP for precise photothermal therapy of the tumor nucleus. The hydrophobic group Fmoc of the dendritic peptide provides strong hydrophobic force to firmly encapsulate IR780, which improves the solubility and stability of IR780. Moreover, the arginine-rich structure facilitates cellular uptake of RDP/I and endows it with the ability to quickly anchor to the nucleus. The nucleus-targeting nanoplatform RDP/I showed efficient nuclear enrichment ability and a significant tumor inhibition effect.

11.
ACS Appl Mater Interfaces ; 15(14): 18450-18462, 2023 Apr 12.
Article En | MEDLINE | ID: mdl-36989350

Li-rich Mn-based layered oxides (LLOs) are one of the most promising cathode materials, which have exceptional anionic redox activity and a capacity that surpasses 250 mA h/g. However, the change from a layered structure to a spinel structure and unstable anionic redox are accompanied by voltage attenuation, poor rate performance, and problematic capacity. The technique of stabilizing the crystal structure and reducing the surface oxygen activity is proposed in this paper. A coating layer and highly concentrated oxygen vacancies are developed on the material's surface, according to scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. In situ EIS shows that structural transformation and oxygen release are inhibited during the first charge and discharge. Optimized 3@LRMA has an average attenuation voltage of 0.55 mV per cycle (vs 1.7 mV) and a capacity retention rate of 93.4% after 200 cycles (vs 52.8%). Postmortem analysis indicates that the successful doping of Al ions into the crystal structure effectively inhibits the structural alteration of the cycling process. The addition of oxygen vacancies reduces the surface lattice's redox activity. Additionally, surface structure deterioration is successfully halted by N- and Cl-doped carbon coating. This finding highlights the significance of lowering the surface lattice oxygen activity and preventing structural alteration, and it offers a workable solution to increase the LLO stability.

12.
Zhongguo Zhong Yao Za Zhi ; 48(2): 465-471, 2023 Jan.
Article Zh | MEDLINE | ID: mdl-36725236

The present study observed the regulatory effect of total flavonoids of Ziziphora clinopodioides on autophagy and the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathways in ApoE~(-/-) mice and explored the mechanism of total flavonoids of Z. clinopodioides against atherosclerosis(AS). ApoE~(-/-) mice were fed on a high-fat diet for eight weeks to induce an AS model. The model mice were randomly divided into a model group, a positive control group, and low-, medium-and high-dose groups of total flavonoids of Z. clinopodioides, while C57BL/6J mice fed on a common diet were assigned to the blank group. The serum and aorta samples were collected after intragastric administration for 12 weeks, and the serum levels of total cholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C), and high density lipoprotein-cholesterol(HDL-C) were detected by an automatic biochemical analyzer. The serum expression levels of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), matrix metalloproteinase-2(MMP-2), and matrix metalloprotei-nase-9(MMP-9) were detected by enzyme-linked immunosorbent assay(ELISA). Oil red O staining was used to observe the aortic plaque area in mice. Hematoxylin-eosin(HE) staining was used to observe the aortic plaque and pathological changes in mice. The expression of P62 and LC3 in the aorta was detected by the immunofluorescence method. The protein expression of LC3Ⅱ/Ⅰ, Beclin-1, P62, p-PI3K, p-Akt, and p-mTOR in the aorta of mice was detected by Western blot. The results showed that compared with the blank group, the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2 and MMP-9 in the model group were significantly increased(P<0.01 or P<0.05), the content of HDL-C was decreased(P<0.05), intra-aortic plaque area was enlarged(P<0.01), the expression of LC3 in the aorta was significantly down-regulated, P62 expression was up-regulated(P<0.01 or P<0.05), the expressions of LC3Ⅱ/Ⅰ and Beclin-1 in the aortic lysate were significantly down-regulated, and the expressions of p-PI3K, p-Akt, p-mTOR and P62 were significantly increased(P<0.01). The medium-and high-dose groups of total flavonoids of Z. clinopodioides could reduce the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2, and MMP-9 in AS model mice(P<0.01 or P<0.05), and increase the content of HDL-C(P<0.01 or P<0.05). The aortic plaque area of mice after middle and high doses of total flavonoids of Z. clinopodioides was significantly reduced(P<0.01), the content of foam cells decrease, and the narrowing of the lumen decreased. The total flavonoids of Z. clinopodioides significantly increased the expression of LC3 in the aorta and the expression of LC3Ⅱ/Ⅰ and Beclin-1 in the lysate, and decreased the expression of P62 in the aorta and the expression of p-PI3K, p-Akt, p-mTOR and P62 in the lysate(P<0.01 or P<0.05). The results showed that the total flavonoids of Z. clinopodioides could improve the content of blood lipids and inflammatory factors, and reduce the generation of foam cells and plaques in aortic tissue, and the mechanism may be related to the regulation of PI3K/Akt/mTOR signaling pathway.


Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Beclin-1 , Cholesterol, LDL , Intercellular Adhesion Molecule-1 , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/genetics , Vascular Cell Adhesion Molecule-1/genetics
13.
Int J Biol Sci ; 19(3): 772-788, 2023.
Article En | MEDLINE | ID: mdl-36778128

Xanthine dehydrogenase (XDH) is the rate-limiting enzyme in purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. The altered expression and activity of XDH are associated with the development and prognosis of multiple types of cancer, while its role in lung adenocarcinoma (LUAD) remains unknown. Herein, we demonstrated that XDH was highly expressed in LUAD and was significantly correlated with poor prognosis. Though inhibition of XDH displayed moderate effect on the viability of LUAD cells cultured in the complete medium, it significantly attenuated the survival of starved cells. Similar results were obtained in XDH-knockout cells. Nucleosides supplementation rescued the survival of starved LUAD cells upon XDH inhibition, while inhibition of purine nucleoside phosphorylase abrogated the process, indicating that nucleoside degradation is required for the XDH-mediated survival of LUAD cells. Accordingly, metabolic flux revealed that ribose derived from nucleoside fueled key carbon metabolic pathways to sustain the survival of starved LUAD cells. Mechanistically, down-regulation of XDH suppressed unfolded protein response (UPR) and autophagic flux in starved LUAD cells. Inhibition of XDH decreased the level of amino acids produced by autophagic degradation, which was accompanied with down-regulation of mTORC1 signaling. Supplementation of amino acids including glutamine or glutamate rescued the survival of starved LUAD cells upon knockout or inhibition of XDH. Finally, XDH inhibitors potentiated the anti-cancer activity of 2-deoxy-D-glucose that induced UPR and/or autophagy in vitro and in vivo. In summary, XDH plays a crucial role in the survival of starved LUAD cells and targeting XDH may improve the efficacy of drugs that induce UPR and autophagy in the therapy of LUAD.


Adenocarcinoma of Lung , Lung Neoplasms , Humans , Xanthine Dehydrogenase/genetics , Xanthine Dehydrogenase/metabolism , Nucleosides/metabolism , Adenocarcinoma of Lung/genetics , Autophagy/genetics , Unfolded Protein Response , Lung Neoplasms/pathology , Xanthines , Nutrients , Amino Acids/metabolism
14.
Foods ; 12(23)2023 Nov 29.
Article En | MEDLINE | ID: mdl-38231780

Low-cost fish species are often used to adulterate or substitute for Atlantic salmon products, posing a serious threat to market order and public health. Hence, reliable techniques are urgently needed to detect Atlantic salmon adulteration. In this study, a precise method for identifying and quantifying adulterated Atlantic salmon with rainbow trout based on droplet digital PCR (ddPCR) testing was developed. Species-specific primers and probes were designed targeting the single-copy nuclear gene myoglobin of two salmonids. A quantitative formula for calculating the mass fraction of adulterated Atlantic salmon with rainbow trout was established based on a one-step conversion strategy, in which the DNA copy number ratios were directly transformed to meat mass fractions by introducing a fixed constant (the transfer coefficient). The dynamic range of the established ddPCR method was from 1% to 90%, with a limit of detection (LOD) of 0.2% and a limit of quantification (LOQ) of 0.8% for rainbow trout in Atlantic salmon, respectively. The quantification method demonstrated an acceptable level of repeatability and reproducibility, as the values of the relative standard deviation (RSD) for the tested meat mixtures with the known fractions were all less than 5%. Thermal and freezing treatments, as well as adding food additives within the recommended dosage limits, had no significant effect on the quantification accuracy. The method was successfully applied to detect rainbow trout adulteration in commercial raw and processed Atlantic salmon products. In comparison to real-time quantitative PCR (qPCR) testing, the established ddPCR method exhibited a higher level of stability and accuracy. Overall, the ddPCR-based quantitative method exhibited high levels of accuracy, stability, sensitivity, and practicability, suitable for applications in the routine surveillance and quality assurance of salmon products.

15.
Gastroenterol Res Pract ; 2022: 7639968, 2022.
Article En | MEDLINE | ID: mdl-35309108

Objective: To evaluate the Chinese new gastric cancer screening score (i.e., Li's score) and Kyoto Classification of Gastritis for screening gastric cancer. Methods: A total of 702 patients were scored using the two scoring methods. Gastric atrophy, intestinal metaplasia, and gastric cancer (including early gastric cancer) were compared between the two scoring methods. The area under the ROC curve, sensitivity, and specificity of the two scoring methods were evaluated. Results: Both of the two scoring methods found that gastric atrophy, intestinal metaplasia, and gastric cancer (including early gastric cancer) were all significantly higher in the medium-risk and high-risk group patients than those in the low-risk group patients. According to the Kyoto Classification of Gastritis, patients in the high-risk group had more gastric atrophy, intestinal metaplasia, and gastric cancer than those in the medium-risk group patients. Gastric atrophy, intestinal metaplasia, and gastric cancer in the low-risk and medium-risk group patients evaluated by the Li score were all significantly higher than those in patients with corresponding risk level evaluated by Kyoto Classification of Gastritis, respectively. The area under the ROC curve of the Li score was 0.702, and the sensitivity and specificity were 57.6% and 85.3%, respectively. The area under the ROC curve of the Kyoto Classification of Gastritis was 0.826, and the sensitivity and specificity were 75.4% and 83.6%, respectively. Conclusion: Both Li's score and Kyoto Classification of Gastritis showed good screening value for gastric cancer, but Kyoto Classification of Gastritis was more sensitive than the Li score.

16.
Angew Chem Int Ed Engl ; 61(5): e202114648, 2022 Jan 26.
Article En | MEDLINE | ID: mdl-34806265

Strategies that enable simultaneous morphology-tuning and electroreduction performance boosting are much desired for the exploration of covalent organic frameworks in efficient CO2 electroreduction. Herein, a kind of functionalizing exfoliation agent has been selected to simultaneously modify and exfoliate bulk COFs into functional nanosheets and investigate their CO2 electroreduction performance. The obtained nanosheets (Cu-Tph-COF-Dct) with large-scale (≈1.0 µm) and ultrathin (≈3.8 nm) morphology enable a superior FECH4 (≈80 %) (almost doubly enhanced than bare COF) with large current-density (-220.0 mA cm-2 ) at -0.9 V. The boosted performance can be ascribed to the immobilized functionalizing exfoliation agent (Dct groups) with integrated amino and triazine groups that strengthen CO2 absorption/activation, stabilize intermediates and enrich the CO concentration around the Cu active sites as revealed by DFT calculations. The point-to-point functionalization strategy for modularly assembling Dct-functionalized COF catalyst for CO2 electroreduction will open up the attractive possibility of developing COFs as efficient CO2 RR electrocatalysts.

17.
World J Clin Cases ; 9(33): 10064-10074, 2021 Nov 26.
Article En | MEDLINE | ID: mdl-34904076

Human life expectancy increases as society becomes more developed. This increased life expectancy poses challenges associated with the rapid aging of the population. Sarcopenia, an age-related disease, has become a worldwide health issue. Patients with sarcopenia experience decreases in muscle mass and function, becoming frail and eventually bedridden. Type 2 diabetes mellitus (T2DM) is also a major health issue; the incidence of T2DM increases with aging. T2DM is associated with reduced muscle strength and poor muscle quality and may contribute to acceleration of the aging process, augmenting age-related sarcopenia. Recent studies indicate that elderly patients with diabetes are at an increased risk for sarcopenia. Therefore, these older diabetic patients with sarcopenia need specific anti-diabetic therapies targeting not only glycemic control but also sarcopenia, with the goal of preventing sarcopenia in pre-sarcopenic patients. Presently, various types of hypoglycemic drugs are available, but which hypoglycemic drugs are better suited for geriatric T2DM patients with sarcopenia remains undetermined. In this review, we discuss the association between diabetes and sarcopenia in geriatric patients, and how anti-diabetic drugs may influence sarcopenia outcomes. This review will guide clinical workers in the selection of drugs best suited for this patient population.

18.
World J Clin Cases ; 9(21): 5860-5872, 2021 Jul 26.
Article En | MEDLINE | ID: mdl-34368305

BACKGROUND: A nomogram is a diagram that aggregates various predictive factors through multivariate regression analysis, which can be used to predict patient outcomes intuitively. Lymph node (LN) metastasis and tumor deposit (TD) conditions are two critical factors that affect the prognosis of patients with colorectal cancer (CRC) after surgery. At present, few effective tools have been established to predict the overall survival (OS) of CRC patients after surgery. AIM: To screen out suitable risk factors and to develop a nomogram that predicts the postoperative OS of CRC patients. METHODS: Data from a total of 3139 patients diagnosed with CRC who underwent surgical removal of tumors and LN resection from 2010 to 2015 were collected from the Surveillance, Epidemiology, and End Results program. The data were divided into a training set (n = 2092) and a validation set (n = 1047) at random. The Harrell concordance index (C-index), Akaike information criterion (AIC), and area under the curve (AUC) were used to assess the predictive performance of the N stage from the American Joint Committee Cancer tumor-node-metastasis classification, LN ratio (LNR), and log odds of positive lymph nodes (LODDS). Univariate and multivariate analyses were utilized to screen out the risk factors significantly correlating with OS. The construction of the nomogram was based on Cox regression analysis. The C-index, receiver operating characteristic (ROC) curve, and calibration curve were employed to evaluate the discrimination and prediction abilities of the model. The likelihood ratio test was used to compare the sensitivity and specificity of the final model to the model with the N stage alone to evaluate LN metastasis. RESULTS: The predictive efficacy of the LODDS was better than that of the LNR based on the C-index, AIC values, and AUC values of the ROC curve. Seven independent predictive factors, namely, race, age at diagnosis, T stage, M stage, LODDS, TD condition, and serum carcinoembryonic antigen level, were included in the nomogram. The C-index of the nomogram for OS prediction was 0.8002 (95%CI: 0.7839-0.8165) in the training set and 0.7864 (95%CI: 0.7604-0.8124) in the validation set. The AUC values of the ROC curve predicting the 1-, 3-, and 5-year OS were 0.846, 0.841, and 0.825, respectively, in the training set and 0.823, 0.817, and 0.835, respectively, in the validation test. Great consistency between the predicted and actual observed OS for the 1-, 3-, and 5-year OS in the training set and validation set was shown in the calibration curves. The final nomogram showed a better sensitivity and specificity than the nomogram with N stage alone for evaluating LN metastasis in both the training set (-4668.0 vs -4688.3, P < 0.001) and the validation set (-1919.5 vs -1919.8, P < 0.001) through the likelihood ratio test. CONCLUSION: The nomogram incorporating LODDS, TD, and other risk factors showed great predictive accuracy and better sensitivity and specificity and represents a potential tool for therapeutic decision-making.

19.
World J Diabetes ; 12(1): 19-46, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33520106

BACKGROUND: Type 2 diabetes mellitus (T2DM) is significantly increasing worldwide, and the incidence of its complications is also on the rise. One of the main complications of T2DM is diabetic kidney disease (DKD). The glomerular filtration rate (GFR) and urinary albumin creatinine ratio (UACR) increase in the early stage. As the disease progresses, UACR continue to rise and GFR begins to decline until end-stage renal disease appears. At the same time, DKD will also increase the incidence and mortality of cardiovascular and cerebrovascular diseases. At present, the pathogenesis of DKD is not very clear. Therefore, exploration of the pathogenesis of DKD to find a treatment approach, so as to delay the development of DKD, is essential to improve the prognosis of DKD. AIM: To detect the expression of tenascin-C (TNC) in the serum of T2DM patients, observe the content of TNC in the glomerulus of DKD rats, and detect the expression of TNC on inflammatory and fibrotic factors in rat mesangial cells (RMCs) cultured under high glucose condition, in order to explore the specific molecular mechanism of TNC in DKD and bring a new direction for the treatment of DKD. METHODS: The expression level of TNC in the serum of diabetic patients was detected by enzyme-linked immunosorbent assay (ELISA), the protein expression level of TNC in the glomerular area of DKD rats was detected by immunohistochemistry, and the expression level of TNC in the rat serum was detected by ELISA. Rat glomerular mesangial cells were cultured. Following high glucose stimulation, the expression levels of related proteins and mRNA were detected by Western blot and polymerase chain reaction, respectively. RESULTS: ELISA results revealed an increase in the serum TNC level in patients with T2DM. Increasing UACR and hypertension significantly increased the expression of TNC (P < 0.05). TNC expression was positively correlated with glycosylated haemoglobin (HbA1c) level, body mass index, systolic blood pressure, and UACR (P < 0.05). Immunohistochemical staining showed that TNC expression in the glomeruli of rats with streptozotocin-induced diabetes was significantly increased compared with normal controls (P < 0.05). Compared with normal rats, serum level of TNC in diabetic rats was significantly increased (P < 0.05), which was positively correlated with urea nitrogen and urinary creatinine (P < 0.05). The levels of TNC, Toll-like receptor-4 (TLR4), phosphorylated nuclear factor-κB p65 protein (Ser536) (p-NF-κB p65), and miR-155-5p were increased in RMCs treated with high glucose (P < 0.05). The level of TNC protein peaked 24 h after high glucose stimulation (P < 0.05). After TNC knockdown, the levels of TLR4, p-NF-κB p65, miR-155-5p, connective tissue growth factor (CTGF), and fibronectin (FN) were decreased, revealing that TNC regulated miR-155-5p expression through the TLR4/NF-κB p65 pathway, thereby regulating inflammation (NF-κB p65) and fibrosis (CTGF and FN) in individuals with DKD. In addition, metformin treatment may relive the processes of inflammation and fibrosis in individuals with DKD by reducing the levels of the TNC, p-NF-κB p65, CTGF, and FN proteins. CONCLUSION: TNC can promote the occurrence and development of DKD. Interfering with the TNC/TLR4/NF-κB p65/miR-155-5p pathway may become a new target for DKD treatment.

20.
Huan Jing Ke Xue ; 41(5): 2381-2389, 2020 May 08.
Article Zh | MEDLINE | ID: mdl-32608857

To improve the stabilization efficiency of biochar on heavy metals in soil, the magnetic material was synthesized by a mild liquid-phase reduction and oxidation method. A soil incubation experiment[0%, 0.3%, 0.6%, and 1.0% (ω)] was carried out to verify the stabilization efficiency of magnetic biochar on heavy metals in soil and its influence on soil properties. The potential stabilization mechanism of magnetic biochar on heavy metals was also analyzed. The results showed that the application of magnetic biochar decreased the bioavailable Cd, Cu, Ni, Pb, and Zn in soil, and the decrease ratio was positively correlated with the application rate of the magnetic biochar. After 24 days incubation, the content of bioavailable Cd, Cu, Ni, Pb, and Zn in soil decreased by 27.52%, 49.55%, 55.83%, 27.33%, and 26.01%, respectively[application rate (ω)at 1%]. However, the fraction of heavy metals in the soil did not change significantly, which may mainly be attributed to the relatively weak bonding mechanisms between the metals and the biochar. The application of magnetic biochar also improved soil properties. The pH of the soil increased by 0.7 units; dehydrogenase activity increased by six times; and catalase activity and organic matter increased by 37.06% and 22.11%, respectively.

...