Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 346: 122657, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245513

RESUMEN

Enterovirus 71 (EV71) is recognized as a major causative agent of hand, foot, and mouth disease (HFMD), posing a significant global public health concern due to its widespread impact and resulting in a major public health issue worldwide. Despite its prevalence, current clinical therapy lacks effective antiviral agents. Fucosylated chondroitin sulfates (FCS) derived from sea cucumber exhibits a range of biological activities including potent antiviral effects. This study provides compelling evidence of the potent antiviral efficacy of FCS against EV71. To further elucidate the impact of structural variations on the anti-EV71 activity, native FCSs with diverse sulfation patterns and a varity of FCS derivatives were prepared and analyzed. Notably, this study presents the detailed structural characterization of FCSs from the sea cucumbers Holothuria scabra Jaege and Holothuria fuscopunctata. Analysis of the structure-activity relationships revealed that molecular weight, sulfated fucose branches, and sulfation pattern were all crucial factors contributing to the potent inhibitory effects of FCS against EV71. Interestingly, molecular weight emerged as the most significant structural determinant of the antiviral potency. These findings suggest the promising potential of utilizing FCS as an innovative EV71 entry inhibitor for the treatment of HFMD.


Asunto(s)
Antivirales , Sulfatos de Condroitina , Enterovirus Humano A , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Antivirales/farmacología , Antivirales/química , Animales , Enterovirus Humano A/efectos de los fármacos , Relación Estructura-Actividad , Humanos , Pepinos de Mar/química , Chlorocebus aethiops , Peso Molecular , Células Vero
2.
ACS Macro Lett ; 13(7): 874-881, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38949618

RESUMEN

The frequent mutations of influenza A virus (IAV) have led to an urgent need for the development of innovative antiviral drugs. Glycopolymers offer significant advantages in biomedical applications owing to their biocompatibility and structural diversity. However, the primary challenge lies in the design and synthesis of well-defined glycopolymers to precisely control their biological functionalities. In this study, functional glycopolymers with sulfated fucose and 6'-sialyllactose were successfully synthesized through ring-opening metathesis polymerization and a postmodification strategy. The optimized heteropolymer exhibited simultaneous targeting of hemagglutinin and neuraminidase on the surface of IAV, as evidenced by MU-NANA assay and hemagglutination inhibition data. Antiviral experiments demonstrated that the glycopolymer displayed broad and efficient inhibitory activity against wild-type and mutant strains of H1N1 and H3N2 subtypes in vitro, thereby establishing its potential as a dual-targeted inhibitor for combating IAV resistance.


Asunto(s)
Antivirales , Fucosa , Subtipo H1N1 del Virus de la Influenza A , Lactosa , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Lactosa/análogos & derivados , Lactosa/química , Lactosa/farmacología , Fucosa/química , Fucosa/análogos & derivados , Fucosa/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Farmacorresistencia Viral/efectos de los fármacos , Humanos , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Animales , Perros , Polímeros/farmacología , Polímeros/química
3.
J Agric Food Chem ; 72(30): 16700-16707, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037174

RESUMEN

3,5-Dimethyl-8-methoxy-3,4-dihydro-1H-isochromen-6-ol (DMD) is a polyketide compound obtained from the endophytic fungus Penicillium sp. HJT-A-10 of Rhodiola tibetica. R. tibetica is a nourishing food and also used in traditional Chinese medicine and Xizang medicine. In dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice, DMD significantly alleviated the pathological symptom of UC. Network pharmacology studies have shown that nucleotide-binding domain-like receptor family pyrin domain containing (NLRP) 3 is the primary target protein of DMD associated with anti-UC. In molecular biology studies, DMD suppressed the activation of NLRP3 and decreased the expression of downstream inflammatory proteins and pro-inflammatory cytokines in UC. The finding was further verified in knockout mice. DMD lost the effect of attenuating DSS-induced UC in NLRP3-/- mice. In conclusion, this study demonstrates that DMD reduces inflammatory response and balances the barrier integrity to attenuate UC via targeting NLRP3, and DMD is a potential natural agent or dietary supplement for attenuating UC.


Asunto(s)
Colitis Ulcerosa , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/genética , Ratones , Humanos , Masculino , Penicillium/química , Benzopiranos/farmacología , Benzopiranos/química , Sulfato de Dextran/efectos adversos
4.
Sci Total Environ ; 919: 170836, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346658

RESUMEN

Same as other bay areas, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is also suffering atmospheric composite pollution. Even a series of atmospheric environment management policies have been conducted to win the "blue sky defense battle", the atmospheric secondary pollutants (e.g., O3) originated from oxygenated volatile organic compounds (OVOCs) still threaten the air quality in GBA. However, there lacks a systematic summary on the emission, formation, pollution and environmental effects of OVOCs in this region for further air quality management. This review focused on the researches related to OVOCs in GBA, including their pollution characteristics, detection methods, source distributions, secondary formations, and impacts on the atmosphere. Pollution profile of OVOCs in GBA revealed that the concentration percentage among total VOCs from Guangzhou and Dongguan cities exceeded 50 %, while methanol, formaldehyde, acetone, and acetaldehyde were the top four highest concentrated OVOCs. The detection technique on regional atmospheric OVOCs (e.g., oxygenated organic molecules (OOMs)) underwent an evolution of off-line derivatization method, on-line spectroscopic method and on-line mass spectrometry method. The OVOCs in GBA were mainly from primary emissions (up to 80 %), including vehicle emissions and biomass combustion. The anthropogenic alkenes and aromatics in urban area, and natural isoprene in rural area also made a significant contribution to the secondary emission (e.g., photochemical formation) of OVOCs. About 20 % in average of ROx radicals was produced from photolysis of formaldehyde in comparison with O3, nitrous acid and rest OVOCs, while the reaction between OVOCs and free radical accelerated the NOx-O3 cycle, contributing to 15 %-60 % cumulative formation of O3 in GBA. Besides, the heterogeneous reactions of dicarbonyls generated 21 %-53 % of SOA. This review also provided suggestions for future research on OVOCs in terms of regional observation, analytical method and mechanistic study to support the development of a control and management strategy on OVOCs in GBA and China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Hong Kong , Macao , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Procesos Fotoquímicos , Monitoreo del Ambiente , Contaminación del Aire/análisis , China , Formaldehído/análisis , Ozono/análisis
5.
Phytomedicine ; 120: 155058, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690231

RESUMEN

BACKGROUND: Given the magnitude of influenza pandemics as a threat to the global population, it is crucial to have as many prevention and treatment options as possible. Piceatannol (PIC) is a tetrahydroxylated stilbenoid (trans-3,4,3',5'-tetrahydroxystilbene), also known as 3'- hydroxy resveratrol, which has demonstrated many different biological activities such as anti-inflammatory and antiviral activities. PURPOSE: In this study, the anti-influenza A virus (IAV) activities and mechanisms of PIC in vitro and in vivo were investigated in order to provide reference for the development of novel plant-derived anti-IAV drugs. METHODS: The viral plaque assay, RT-PCR and western blot assay were used to evaluate the anti-IAV effects of PIC in vitro. The anti-IAV mechanism of PIC was determined by HA syncytium assay, DARTS assay and Surface Plasmon Resonance assay. The mouse pneumonia model combined with HE staining were used to study the anti-IAV effects of PIC in vivo. RESULTS: PIC shows inhibition on the multiplication of both H1N1 and H3N2 viruses, and blocks the infection of H5N1 pseudovirus with low toxicity. PIC may directly act on the envelope of IAV to induce the rupture and inactivation of IAV particles. PIC can also block membrane fusion via binding to HA2 rather than HA1 and cleavage site of HA0. PIC may interact with the two residues (HA2-T68 and HA2-I75) of HA2 to block the conformational change of HA so as to inhibit membrane fusion. Importantly, oral therapy of PIC also markedly improved survival and reduced viral titers in IAV-infected mice. CONCLUSION: PIC possesses significant anti-IAV effects both in vitro and in vivo and may block IAV infection mainly through interaction with HA to block membrane fusion. Thus, PIC has the potential to be developed into a new broad-spectrum anti-influenza drug for the prevention and treatment of influenza.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Estilbenos , Animales , Ratones , Humanos , Subtipo H3N2 del Virus de la Influenza A , Hemaglutininas , Gripe Humana/tratamiento farmacológico , Estilbenos/farmacología , Modelos Animales de Enfermedad
6.
Biomed Pharmacother ; 166: 115323, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579692

RESUMEN

Dyslipidemia is characterized by elevated levels of total cholesterol and triglycerides in serum, and has become the primary human health killer because of the major risk factors for cardiovascular diseases. Although there exist plenty of drugs for dyslipidemia, the number of patients who could benefit from lipid-lowering drugs still remains a concern. Ligustilide (Lig), a natural phthalide derivative, was reported to regulate lipid metabolic disorders. However, its specific targets and underlying molecular mechanism are still unclear. In this study, we found that Lig alleviated high fat diet-induced dyslipidemia by inhibiting cholesterol biosynthesis. Furthermore, a series of chemical biological analysis methods were used to identify its target protein for regulating lipid metabolism. Collectively, 3-hydroxy-3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) of hepatic cells was identified as a target for Lig to regulate lipid metabolism. The mechanistic study confirmed that Lig irreversibly binds to Cys129 of HMGCS1 via its metabolic intermediate 6,7-epoxyligustilide, thereby reducing cholesterol synthesis and improving lipid metabolism disorders. These findings not only systematically elucidated the lipid-lowering mechanism of Lig, but also provided a new structural compound for the treatment of dyslipidemia.


Asunto(s)
Coenzima A Ligasas , Dislipidemias , Humanos , Triglicéridos , Dislipidemias/tratamiento farmacológico , Colesterol , Hidroximetilglutaril-CoA Sintasa
7.
Eur J Med Chem ; 258: 115615, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37413878

RESUMEN

Development and design of anti-influenza drugs with novel mechanisms is of great significance to combat the ongoing threat of influenza A virus (IAV). Hemagglutinin (HA) is regarded as a potential target for the therapy of IAV. Our previous research led to the discovery of penindolone (PND), a new diclavatol indole adduct, as an HA targeting leading compound exhibited anti-IAV activity. To enhance the bioactivity and understand the structure-activity relationships (SARs), 65 PND derivatives were designed and synthesized, and the anti-IAV activities as well as the HA targeting effects were systematically investigated in this study. Among them, compound 5g possessed high affinity to HA and was more effective than PND in terms of inhibiting HA-mediated membrane fusion. Compound 5g may act on the trypsin cleavage site of HA to exhibit a strong inhibition on membrane fusion. In addition, oral administration of 5g can significantly reduce the pulmonary virus titer, attenuate the weight loss, and improve the survival of IAV-infected mice, superior to the effects of PND. These findings suggest that the HA inhibitor 5g has potential to be developed into a novel broad-spectrum anti-IAV agent in the future.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Humanos , Ratones , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas/farmacología , Fusión de Membrana
8.
Virus Res ; 329: 199098, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944412

RESUMEN

Proanthocyanidins (PC), a natural flavonoid compound, was reported to possess a variety of pharmacological activities such as anti-tumor and anti-viral effects. In this study, the anti-Enterovirus 71 (EV71) activities and mechanisms of PC were investigated both in vitro and in vivo. The results showed that PC possessed anti-EV71 activities in different cell lines with low toxicity. PC can block both the adsorption and entry processes of EV71 via directly binding to virus VP1 protein. PC may competitively interfere with the binding of VP1 to its receptor SCARB2. PC can also regulate three different MAPK signaling pathways to reduce EV71 infection and attenuate virus induced inflammatory responses. Importantly, intramuscular therapy of EV71-infected mice with PC markedly improved their survival and attenuated the severe clinical symptoms. Therefore, the natural compound PC has potential to be developed into a novel anti-EV71 agent targeting viral VP1 protein and MAPK pathways.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Proantocianidinas , Animales , Ratones , Enterovirus Humano A/fisiología , Proantocianidinas/farmacología , Proantocianidinas/metabolismo , Proantocianidinas/uso terapéutico , Línea Celular
9.
Phytomedicine ; 104: 154325, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35820303

RESUMEN

BACKGROUND: Tetrandrine (TET), a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, is the only approved medicine in China for silicosis. However, TET-induced hepatotoxicity has raised safety concerns. The underlying toxic targets and mechanism induced by TET remain unclear; there are no targeted detoxification strategies developed for TET-induced hepatotoxicity. Ursolic acid (UA), a pentacyclic triterpene with liver protective effects, may have detoxification effects on TET-induced hepatotoxicity. PURPOSE: This study aims to explore toxic targets and mechanism of TET and present UA as a potential targeted therapy for alleviating TET-induced hepatotoxicity. METHODS: A TET-induced liver-injury model was established to evaluate TET toxicity and the potential UA detoxification effect. Alkenyl-modified TET and UA probes were designed to identify potential liver targets. Pharmacological and molecular biology methods were used to explore the underlying toxicity/detoxification mechanism. RESULTS: TET induced liver injury by covalently binding to the substrate-binding pocket (H-site) of glutathione S-transferases (GSTs) and inhibiting GST activity. The covalent binding led to toxic metabolite accumulation and caused redox imbalance and liver injury. UA protected the liver from TET-induced damage by competitively binding to the GST H-site. CONCLUSION: The mechanism of TET-induced hepatotoxicity is related to irreversible binding with the GST H-site and GST-activity inhibition. UA, a natural antidote, competed with TET on H-site binding and reversed the redox imbalance. This study revealed the hepatotoxic mechanism of TET and provided a targeted detoxifying agent, UA, to alleviate hepatotoxicity caused by GST inhibition.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Enfermedad Hepática Inducida por Sustancias y Drogas , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Sitios de Unión , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Transferasas/metabolismo , Triterpenos , Ácido Ursólico
10.
Phytomedicine ; 103: 154233, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35671633

RESUMEN

BACKGROUND: In hypercholesteremia, the concentrations of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are enhanced in serum, which is strongly associated with an increased risk of developing atherosclerosis. Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid, was found to alleviate hypercholesterolemia and hypercholesterolemia-induced cardiovascular disease. However, the specific targets and molecular mechanisms related to the effects of UA in reducing cholesterol have not been elucidated. PURPOSE: In this study, we aimed to illustrate the target of UA in the treatment of hypercholesterolemia and to reveal its underlying molecular mechanism. METHODS: Nontargeted metabolomics was conducted to analyze the metabolites and related pathways that UA affected in vivo. The main lipid metabolism targets of UA were analyzed by target fishing and fluorescence colocalization in mouse liver. Molecular docking, in-gel fluorescence scan and thermal shift were assessed to further investigate the binding site of the UA metabolite with HMGCS1. C57BL/6 mice were fed a high-fat diet (HFD) for 12 weeks to induce hypercholesteremia. Liver tissues were used to verify the cholesterol-lowering molecular mechanism of UA by targeted metabolomics, serum was used to detect biochemical indices, and the entire aorta was used to analyze the formation of atherosclerotic lesions. RESULTS: Our results showed that hydroxy­3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) was the primary lipid metabolism target protein of UA. The UA metabolite epoxy-modified UA irreversibly bonds with the thiol of Cys-129 in HMGCS1, which inhibits the catalytic activity of HMGCS1 and reduces the generation of precursors in cholesterol biosynthesis in vivo. The contents of TC and LDL-C in serum and the formation of the atherosclerotic area in the entire aorta were markedly reduced with UA treatment in Diet-induced hypercholesteremia mice. CONCLUSION: UA inhibits the catalytic activity of HMGCS1, reduces the generation of downstream metabolites in the process of cholesterol biosynthesis and alleviates Diet-induced hypercholesteremia via irreversible binding with HMGCS1 in vivo. It is the first time to clarify the irreversible inhibition mechanism of UA against HMGCS1. This paper provides an increased understanding of UA, particularly regarding the molecular mechanism of the cholesterol-lowering effect, and demonstrates the potential of UA as a novel therapeutic for the treatment of hypercholesteremia.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/prevención & control , Colesterol , LDL-Colesterol , Coenzima A Ligasas , Dieta Alta en Grasa , Hipercolesterolemia/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Triterpenos , Ácido Ursólico
11.
Mol Nutr Food Res ; 66(11): e2100963, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35332659

RESUMEN

SCOPE: Glutamate (Glu) and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitters that control information flow in the brain. GABA dysfunction is a general vulnerability factor for mental illness. Cinnamaldehyde (CA) is found to have sedation in a mental illness model. However, the specific targets and molecular mechanisms related to the sedative effects of CA have not been elucidated. METHODS AND RESULTS: Metabolomics analysis and target fishing showed CA could increase the expression of GABA in vivo, and α-enolase (ENO1) is the primary target protein of CA associated with sedation. CA mainly binds with ENO1 in the cerebellar granular layer of brain, which influences the first transformations of the input signals arriving in the cerebellar cortex. The α,ß-unsaturated aldehyde group of CA blocks the hydroxy group of Ser40, which induces a loss in ENO1 activation. CA also disturbs the glycolysis pathway and influences the tricarboxylic acid cycle and oxidative phosphorylation, which activate gluconeogenesis to provide energy to the brain. This mechanism is verified in zebrafish with ENO1 or glutamic acid decarboxylase (GAD) deficiency. CONCLUSIONS: CA demonstrates sedation and alleviates GABA dysfunction via covalent binding ENO1, which shows the potential to improve the therapy of mental illness.


Asunto(s)
Pez Cebra , Ácido gamma-Aminobutírico , Acroleína/análogos & derivados , Animales , Glutamato Descarboxilasa/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Pez Cebra/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
12.
Neurosci Lett ; 775: 136538, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35189316

RESUMEN

The calcium/calmodulin-dependent protein phosphase calcineurin (CaN) regulates synaptic plasticity by controlling the phosphorylation of synaptic proteins including AMPA type glutamate receptors. The regulator of calcineurin 1 (RCAN1) is characterized as an endogenous inhibitor of CaN and its dysregulation is implicated in multiple neurological disorders. However, whether RCAN1 is engaged in nociceptive processing in the spinal dorsal horn remains unrevealed. In this study, we found that RCAN1 was predominately expressed in pain-related neurons in the superficial dorsal horn of the spinal cord. Intraplantar injection of complete Freund's adjuvant (CFA) specifically increased the total and synaptic expression of the RCAN1.4 isoform in spinal dorsal horn. The CFA-induced inflammation also caused an increased binding of RCAN1.4 to CaN. Overexpression of RCAN1.4 in spinal dorsal horn of intact mice produced both mechanical allodynia and thermal hyperalgesia, which were accompanied by increased synaptic expression and phosphorylation of GluA1 subunit. Furthermore, the siRNA-mediated knockdown of RCAN1.4 significantly attenuated the development of pain hypersensitivity, meanwhile, decreased the synaptic expression of GluA1 in mice with peripheral inflammation. These data suggested that the increased expression of RCAN1.4 contributed to the development of inflammatory pain hypersensitivity, at least in part by promoting the synaptic recruitment of GluA1-containing AMPA receptor.


Asunto(s)
Calcineurina , Asta Dorsal de la Médula Espinal , Animales , Calcineurina/metabolismo , Adyuvante de Freund/metabolismo , Adyuvante de Freund/toxicidad , Hiperalgesia/metabolismo , Inflamación/metabolismo , Ratones , Dolor/metabolismo , Células del Asta Posterior/metabolismo , Receptores AMPA/metabolismo , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Regulación hacia Arriba
13.
Metabolites ; 12(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35208196

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs), such as cyclooxygenase (Cox)-1/2 inhibitor, have emerged as potent antipyretics and analgesics. However, few herbs with Cox-1/2 inhibitory activity are commonly used for heat-clearing in China. Although these are known to have antipyretic activity, there is a lack of molecular data supporting their activity. Using the traditional Chinese medicine herb honeysuckle (Hon) as an example, we explored key antipyretic active compounds and their mechanisms of action by assessing their metabolites and metabolomics. Mitogen-activated protein kinase (MAPK) 3 and protein kinase B (AKT) 1 were suggested as key targets regulated primarily by chlorogenic acid (CA) and swertiamarin (SWE). CA and SWE synergistically inhibited the production of interleukin (IL)-1 and IL-6, alleviated generation of prostaglandin E2, and played an antipyretic role equivalent to honeysuckle extract at the same dose contents within 3 h. Collectively, these findings indicated that lipopolysaccharide-induced fever can be countered by CA with SWE synergistically, allowing the substitution of a crude extract of complex composition with active compounds. Our findings demonstrated that, unlike the traditional NSAIDs, the Hon extract showed a remote and indirect mechanism for alleviating fever that depended on the phosphatidylinositol-3-kinase-AKT and MAPK pathways by regulating the principal mediator of inflammation.

14.
Acta Pharm Sin B ; 12(1): 135-148, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127376

RESUMEN

Hyperaldosteronism is a common disease that is closely related to endocrine hypertension and other cardiovascular diseases. Cytochrome P450 11B2 (CYP11B2), an important enzyme in aldosterone (ALD) synthesis, is a promising target for the treatment of hyperaldosteronism. However, selective inhibitors targeting CYP11B2 are still lacking due to the high similarity with CYP11B1. In this study, atractylenolide-I (AT-I) was found to significantly reduce the production of ALD but had no effect on cortisol synthesis, which is catalyzed by CYP11B1. Chemical biology studies revealed that due to the presence of Ala320, AT-I is selectively bound to the catalytic pocket of CYP11B2, and the C8/C9 double bond of AT-I can be epoxidized, which then undergoes nucleophilic addition with the sulfhydryl group of Cys450 in CYP11B2. The covalent binding of AT-I disrupts the interaction between heme and CYP11B2 and inactivates CYP11B2, leading to the suppression of ALD synthesis; AT-I shows a significant therapeutic effect for improving hyperaldosteronism.

15.
Phytomedicine ; 98: 153963, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35121390

RESUMEN

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is a serious public health challenge in the world. According to the treatment instructions by Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2020, bronchiectasis combine with inhaled corticosteroids and long-acting anti-muscarinic agents were recommended as the main prescription. However, this symptomatic treatment still has ineluctable limits because it ignored the most pathogenesis mechanism of COPD. As an alternative traditional Chinese medicine (TCM) for COPD, Bufei Jianpi granules (BJG) can reduce the frequency and duration of acute exacerbation in COPD patients and improve their quality of life. The evidence demonstrated BJG acts as therapeutics that retarding the airway remodeling process, eliminating phlegm, thrombolysis and improving mitochondrial function. However, the detailed molecular mechanism is still urgently revealed. PURPUSE: In this study, we aim to find out the active pharmacodynamic ingredients and reveal the treatment mechanism of active pharmacodynamic ingredients. METHODS: Based on the pharmacodynamic evaluation and chemomic profiling of BJG in COPD rats, an integrated multi-omics analysis was performed, including molecular networking, metabonomics, proteomics and bioinformatics. Moreover, focus on the active compounds, we verified the molecular core mechanism by molecular biology methods. RESULTS: Pachymic acid, shionone, peiminine and astragaloside A was verified as therapeutic agents for improving the condition of COPD by acting on the EGFR, ERK1, PAI-1 and p53 target, respectively. CONCLUSION: In this study, our findings indicated that some compounds in BJG alleviates the pathological process of COPD, which is related to regulating lung function, mucus production, pulmonary embolism and energy metabolism and this will be a benefit complementary to GOLD guidelines.

16.
Mol Neurobiol ; 58(12): 6505-6519, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34559357

RESUMEN

The A-kinase anchoring protein 150 (AKAP150) organizes kinases and phosphatases to regulate AMPA receptors (AMPARs) that are pivotal for synaptic plasticity. AKAP150 itself undergoes S-palmitoylation. However, the roles of AKAP150 and its palmitoylation in spinal nociceptive processing remain unknown. In this study, we found that intraplantar injection of complete Freund's adjuvant (CFA) significantly increased the synaptic expression of AKAP150 and caused a reorganization of AKAP150 signaling complex in spinal dorsal horn. Knockdown of AKAP150 or interruption of its interactions with kinases effectively suppressed the CFA-induced synaptic expression of GluA1 subunit of AMPARs. Our data also showed that an upregulation of AKAP150 palmitoylation was involved in the synaptic redistribution of AKAP150. Inhibition of AKAP150 palmitoylation by expression of palmitoylation-defective mutant AKAP150 (C36, 123S) effectively repressed the CFA-induced phosphorylation and synaptic expression of GluA1 subunit, meanwhile, attenuated the development of mechanical allodynia and thermal hyperalgesia. Furthermore, we found that an increased expression of palmitoyl acyltransferase ZDHHC2 contributed to the upregulation of AKAP150 palmitoylation and GluA1 accumulation in inflamed mouse. These data indicated that AKAP150 and its palmitoylation were involved in AMPA receptor-dependent modification of nociceptive transmission, and the manipulations of AKAP150 signaling complex and palmitoylation might serve as potential therapeutic strategies for persistent pain after inflammation.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Hiperalgesia/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Sinapsis/metabolismo , Animales , Lipoilación , Masculino , Ratones , Neuronas/efectos de los fármacos , Palmitatos/farmacología , Fosforilación , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Sinapsis/efectos de los fármacos
17.
Acta Pharmacol Sin ; 42(7): 1101-1110, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33028983

RESUMEN

Alcoholic liver disease (ALD) is one of the pathogenic factors of chronic liver disease with the highest clinical morbidity worldwide. Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid, has shown many health benefits including antioxidative, anti-inflammatory, anticancer, and hepatoprotective activities. We previously found that UA was metabolized in vivo into epoxy-modified UA containing an epoxy electrophilic group and had the potential to react with nucleophilic groups. In this study we prepared an alkynyl-modified UA (AM-UA) probe for tracing and capturing the target protein of UA from liver in mice, then investigated the mode by which UA bound to its target in vivo. By conducting proteome identification and bioinformatics analysis, we identified caspase-3 (CASP3) as the primary target protein of UA associated with liver protection. Molecule docking analysis showed that the epoxy group of the UA metabolite reacted with Cys-163 of CASP3, forming a covalent bond with CASP3. The binding mode of the UA metabolites (UA, CM-UA, and EM-UA) was verified by biochemical evaluation, demonstrating that the epoxy group produced by metabolism played an important role in the inhibition of CASP3. In alcohol-treated HepG2 cells, pretreatment with the UA metabolite (10 µM) irreversibly inhibited CASP3 activities, and subsequently decreased the cleavage of PARP and cell apoptosis. Finally, pre-administration of UA (20-80 mg· kg-1 per day, ig, for 1 week) dose-dependently alleviated alcohol-induced liver injury in mice mainly via the inhibition of CASP3. In conclusion, this study demonstrates that UA is a valuable lead compound for the treatment of ALD.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Inhibidores de Caspasas/uso terapéutico , Hepatopatías Alcohólicas/tratamiento farmacológico , Hígado/efectos de los fármacos , Triterpenos/uso terapéutico , Secuencia de Aminoácidos , Animales , Caspasa 3/química , Inhibidores de Caspasas/metabolismo , Cisteína/química , Compuestos Epoxi/química , Compuestos Epoxi/uso terapéutico , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Hígado/enzimología , Hígado/patología , Hepatopatías Alcohólicas/enzimología , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Alineación de Secuencia , Triterpenos/metabolismo , Ácido Ursólico
18.
Life Sci ; 258: 118151, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726661

RESUMEN

AIMS: Hepatic glucose metabolism involves a variety of catabolic and anabolic pathways, and the dynamic balance of glucose metabolism is regulated in response to environmental and nutritional changes. The molecular mechanism of glucose metabolism in liver is complex and has not been fully elucidated so far. In this study, we hope to elucidate the target and mechanism of cinnamaldehyde (CA) in regulating glucose metabolism. MATERIALS AND METHODS: Molecular image tracing and magnetic capture in combination with an alkynyl-CA probe (Al-CA) was used to show CA covalently binds to α-enolase (ENO1) in both mouse liver and HepG2 cells. Accurate metabolic flow assays subsequently demonstrated that the utilization of glycogenic amino acids and the biosynthesis of tricarboxylic acid (TCA) cycle intermediates were strengthened, which was detected using nontargeted and targeted metabolomics analyses. KEY FINDINGS: Our study shows that CA covalently bonds with ENO1, which affects the stability and activity of ENO1 and changes the dynamic balance of glucose metabolism. The interruption of gluconeogenic reflux by ENO1 enhanced TCA cycle, and eventually led to a decrease in blood glucose and the improvement of mitochondrial efficiency. SIGNIFICANCE: These results provide a detailed description of how CA maintains the dynamic balance of glucose utilization and improves energy metabolism.


Asunto(s)
Acroleína/análogos & derivados , Biomarcadores de Tumor/metabolismo , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Aromatizantes/farmacología , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Acroleína/farmacología , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células Hep G2 , Humanos , Ratones , Simulación del Acoplamiento Molecular
19.
Cancers (Basel) ; 12(2)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013122

RESUMEN

At present, melanoma is a common malignant tumor with the highest mortality rate of all types of skin cancer. Although the first option for treating melanoma is with chemicals, the effects are unsatisfactory and include poor medication response and high resistance. Therefore, developing new medicines or a novel combination approach would be a significant breakthrough. Here, we present cinnamaldehyde (CA) as a potential candidate, which exerted an antitumor effect in melanoma cell lines. Chemical biology methods of target fishing, molecular imaging, and live cell tracing by an alkynyl-CA probe revealed that the α-enolase (ENO1) protein was the target of CA. The covalent binding of CA with ENO1 changed the stability of the ENO1 protein and affected the glycolytic activity. Furthermore, our results demonstrated that dacarbazine (DTIC) showed a high promoting effect with CA for antimelanoma both in vivo and in vitro. The combination improved the DTIC cell cycle arrest in the S phase and markedly impacted melanoma growth. As a covalent inhibitor of ENO1, CA combined with DTIC may be beneficial in patients with drug resistance in antimelanoma therapy.

20.
FEBS J ; 287(9): 1816-1829, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31665825

RESUMEN

Swertiamarin (SW), a representative component in Flos Lonicerae Japonicae, has been reported to exert significant activity in preventing infections. In this research, we aim to clarify the details of SW and its target to explore SW's underlying anti-inflammatory mechanisms. An azide labeled SW probe was synthesized for protein target fishing, and the results demonstrated that AKT could be captured specifically. Immunofluorescence colocalization with AKT was implemented by a click reaction of the SW probe and alkynyl CY5. The result showed that AKT was one of the targets of SW. Then, a competitive combination experiment using a set of AKT inhibitors and a membrane translocation experiment confirmed that SW might target the pleckstrin homology (PH) domain of AKT. This specific binding directly deactivated the phosphorylation of AKT on both Ser473 and Thr308, which induced the dephosphorylation of IKK and NF-κB. Finally, proinflammatory cytokines (TNF-α, IL-6, and IL-8) were suppressed both in cells and in acute lung injury animal model by targeting AKT-PH domain. This study demonstrated that SW functions as a natural AKT inhibitor and presents significant anti-inflammatory activity by directly regulating the AKT-PH domain and inhibiting downstream inflammatory molecules.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Proteínas Sanguíneas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Glucósidos Iridoides/farmacología , Fosfoproteínas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pironas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/química , Proteínas Sanguíneas/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Inflamación/metabolismo , Glucósidos Iridoides/química , Lonicera/química , Ratones , Estructura Molecular , Fosfoproteínas/metabolismo , Plantas Medicinales/química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pironas/química , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA