Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Plant Sci ; 341: 112013, 2024 Apr.
Article En | MEDLINE | ID: mdl-38309474

Initiation of plant vascular tissue is regulated by transcriptional networks during development and in response to environmental stimuli. The WALL-ASSOCIATED KINASES (WAKs) and WAK-likes (WAKLs) are cell surface receptors involved in cell expansion and defence in cells with primary walls, yet their roles in regulation of vascular tissue development that contain secondary walls remains unclear. In this study, we showed tomato (Solanum lycopersicum) SlWAKL2 and the orthologous gene in Arabidopsis thaliana, AtWAKL14, were specifically expressed in vascular tissues. SlWAKL2-RNAi tomato plants displayed smaller fruit size with fewer seeds and vascular bundles compared to wild-type (WT) and over-expression (OE) lines. RNA-seq data showed that SlWAKL2-RNAi fruits down-regulated transcript levels of genes related to vascular tissue development compared to WT. Histological analysis showed T-DNA insertion mutant wakl14-1 had reduced plant stem length with fewer number of xylem vessels and interfascicular fibres compared to WT, with no significant differences in cellulose and lignin content. Mutant wakl14-1 also showed reduced number of vascular bundles in fruit. A proWAKL14::mCherry-WAKL14 fusion protein was able to complement wakl14-1 phenotypes and showed mCherry-WAKL14 associated with the plasma membrane. In vitro binding assays showed both SlWAKL2 and AtWAKL14 can interact with pectin and oligogalacturonides. Our results reveal novel roles of WAKLs in regulating vascular tissue development.


Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolism , Solanum lycopersicum/genetics , Cell Wall/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Lignin/metabolism , Gene Expression Regulation, Plant
2.
Anal Bioanal Chem ; 416(1): 287-297, 2024 Jan.
Article En | MEDLINE | ID: mdl-37938412

Bile acids (BAs) are involved in the development of necrotizing enterocolitis (NEC), which mainly occurs in preterm infants. We aim to identify the change of BAs in preterm infants and validate its potential value in the detection of NEC. Targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to measure the plasma BAs in healthy preterm infants and patients with NEC. By analyzing the level of BAs in healthy preterm infants, we found that the plasma concentrations of BAs were related to sex, gestational/postnatal age, birth weight, mode of birth, and feeding type after birth. The plasma levels of TCA, GCA, TCDCA, GCDCA, primary BAs, and total BAs and the primary/secondary BA ratio were decreased, while DCA, UDCA, and secondary BAs were increased in NEC. The primary/secondary BA ratio (cutoff point 62.9) can effectively differentiate NEC from healthy preterm infants, with an AUC of 0.9, a sensitivity of 94.5%, and a specificity of 78.1%. Combining the ratio with high-risk factors of NEC can better distinguish between NEC and control, with an AUC of 0.95. Importantly, significantly lower levels of primary/secondary BA ratio were found in infants with surgical NEC than in nonsurgical NEC cases. The cutoff point of 28.7 identified surgical NEC from nonsurgical NEC with sensitivity and specificity of 76.9% and 100%. Thus, our study identified that the primary/secondary BA ratio in the plasma can differentiate NEC from healthy preterm infants and effectively differentiate the surgical NEC from nonsurgical NEC. Therefore, LC-MS/MS was expected to be a novel measurement platform used to distinguish infants who are most in need of close monitoring or early surgical intervention.


Enterocolitis, Necrotizing , Infant, Newborn, Diseases , Infant , Infant, Newborn , Humans , Infant, Premature , Bile Acids and Salts , Chromatography, Liquid , Tandem Mass Spectrometry , Enterocolitis, Necrotizing/diagnosis , Liquid Chromatography-Mass Spectrometry , Biomarkers
3.
Front Plant Sci ; 14: 1275983, 2023.
Article En | MEDLINE | ID: mdl-38034570

Introduction: Fasciclin-like arabinogalactan-proteins (FLAs) are a family of multi-domain glycoproteins present at the cell surface and walls of plants. Arabidopsis thaliana FLA12 and homologs in cotton, Populus, and flax have been shown to play important functions regulating secondary cell wall (SCW) development. FLA12 has been shown to have distinct roles from the closely related FLA11 that also functions during SCW development. The promoter and domain features of FLA12 that regulate functional specificity have not been well characterized. Methods: In this study, promoter swap experiments of FLA11 and FLA12 were investigated. Mutation of proposed functional regions within FLA12 were used to investigate the role of post-translational modifications on sub-cellular location and trafficking. Domain swap experiments between FLA11 and FLA12 were performed to identify regions of functional specificity. Results: Promote swap experiments showed that FLA12 is differentially expressed in both stem and rosette leaves compared to FLA11. Post-translational modifications, in particular addition of the glycosylphosphatidylinositol-anchor (GPI-anchor), were shown to be important for FLA12 location at the plasma membrane (PM)/cell wall interface. Domain swap experiments between FLA11 and FLA12 showed that the C-terminal arabinogalactan (AG) glycan motif acts as a key regulatory region differentiating FLA12 functions from FLA11. Discussion: Understanding of FLA12 promoter and functional domains has provided new insights into the regulation of SCW development and functional specificity of FLAs for plant growth and development.

4.
J Exp Clin Cancer Res ; 42(1): 250, 2023 Sep 28.
Article En | MEDLINE | ID: mdl-37759224

BACKGROUND: Ewing sarcoma (ES) is an aggressive childhood bone and soft tissue cancer. KIAA1429 is one type of N6-methyladenosine (m6A) writer that plays a tumor-progressive role in various cancers, but the role of KIAA1429 in ES remains to be elucidated. The aim of the study was to investigate the role of KIAA1429 in ES. METHODS: We performed a multi-omic screen including CRISPR-Cas9 functional genomic and transcriptomic approaches, and identified that KIAA1429 played a significant role in ES progression. Gene knockdown, quantitative real-time PCR (Q-RT-PCR), immunoblotting, CellTiter-Glo assays, clonogenic assays, a subcutaneous xenograft model and immunohistochemistry were used to assess the functional role of KIAA1429 in ES. We mainly conducted RNA sequencing (RNA-seq) in ES cells to analyze the downstream regulatory mechanism of KIAA1429. An integrative analysis of chromatin immunoprecipitation sequencing (ChIP-seq) and RNA-seq indicated the upstream regulatory mechanism of KIAA1429. RESULTS: In vitro and in vivo CRISPR-Cas9 knockout screening identified KIAA1429 as an ES-dependent gene. Genetic suppression of KIAA1429 inhibited ES cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that KIAA1429 promotes ES tumorigenesis by regulating the ribosome-associated cell cycle and cancer-related inflammation. Interestingly, we found that STAT3 was a target of KIAA1429 and that a STAT3 inhibitor reduced KIAA1429 transcript levels, indicating positive feedback between KIAA1429 and STAT3. Finally, we found that NKX2-2 bound to the KIAA1429 promoter and transactivated KIAA1429. CONCLUSION: Our study systematically analyzed ES-dependent epigenetic/transcriptional regulatory genes and identified KIAA1429 as a biomarker of tumor progression in ES, providing a potential therapeutic target for treating ES.


Sarcoma, Ewing , Animals , Humans , Child , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Genes, Essential , CRISPR-Cas Systems , Cell Line, Tumor , Disease Models, Animal , Cell Proliferation
5.
Plant J ; 115(2): 529-545, 2023 Jul.
Article En | MEDLINE | ID: mdl-37029760

The plant secondary cell wall is a thickened matrix of polysaccharides and lignin deposited at the cessation of growth in some cells. It forms the majority of carbon in lignocellulosic biomass, and it is an abundant and renewable source for forage, fiber, materials, fuels, and bioproducts. The complex structure and arrangement of the cell wall polymers mean that the carbon is difficult to access in an economical and sustainable way. One solution is to alter the cell wall polymer structure so that it is more suited to downstream processing. However, it remains difficult to predict what the effects of this engineering will be on the assembly, architecture, and properties of the cell wall. Here, we make use of Arabidopsis plants expressing a suite of genes to increase pectic galactan chain length in the secondary cell wall. Using multi-dimensional solid-state nuclear magnetic resonance, we show that increasing galactan chain length enhances pectin-cellulose spatial contacts and increases cellulose crystallinity. We also found that the increased galactan content leads to fewer spatial contacts of cellulose with xyloglucan and the backbone of pectin. Hence, we propose that the elongated galactan side chains compete with xyloglucan and the pectic backbone for cellulose interactions. Due to the galactan topology, this may result in comparatively weak interactions and disrupt the cell wall architecture. Therefore, introduction of this strategy into trees or other bioenergy crops would benefit from cell-specific expression strategies to avoid negative effects on plant growth.


Arabidopsis , Cellulose , Cellulose/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Galactans/metabolism , Pectins/metabolism , Cell Wall/metabolism , Carbon/metabolism
6.
Cell Surf ; 9: 100102, 2023 Dec.
Article En | MEDLINE | ID: mdl-36873729

Arabinogalactan-proteins (AGPs) are cell wall glycoproteins that make up a relatively small component of the extracellular matrix of plants yet have significant influence on wall mechanics and signalling. Present in walls of algae, bryophytes and angiosperms, AGPs have a wide range of functional roles, from signalling, cell expansion and division, embryogenesis, responses to abiotic and biotic stress, plant growth and development. AGPs interact with and influence wall matrix components and plasma membrane proteins to regulate developmental pathways and growth responses, yet the exact mechanisms remain elusive. Comprising a large gene family that is highly diverse, from minimally to highly glycosylated members, varying in their glycan heterogeneity, can be plasma membrane bound or secreted into the extracellular matrix, have members that are highly tissue specific to those with constitutive expression; all these factors have made it extremely challenging to categorise AGPs many qualities and roles. Here we attempt to define some key features of AGPs and their biological functions.

7.
Front Plant Sci ; 14: 1150202, 2023.
Article En | MEDLINE | ID: mdl-36998675

The cell wall is one of the defining features of plants, controlling cell shape, regulating growth dynamics and hydraulic conductivity, as well as mediating plants interactions with both the external and internal environments. Here we report that a putative mechanosensitive Cys-protease DEFECTIVE KERNEL1 (DEK1) influences the mechanical properties of primary cell walls and regulation of cellulose synthesis. Our results indicate that DEK1 is an important regulator of cellulose synthesis in epidermal tissue of Arabidopsis thaliana cotyledons during early post-embryonic development. DEK1 is involved in regulation of cellulose synthase complexes (CSCs) by modifying their biosynthetic properties, possibly through interactions with various cellulose synthase regulatory proteins. Mechanical properties of the primary cell wall are altered in DEK1 modulated lines with DEK1 affecting both cell wall stiffness and the thickness of the cellulose microfibril bundles in epidermal cell walls of cotyledons.

8.
Plant Physiol ; 192(1): 119-132, 2023 05 02.
Article En | MEDLINE | ID: mdl-36797772

The role of glycoproteins as key cell surface molecules during development and stress is well established; yet, the relationship between their structural features and functional mechanisms is poorly defined. FASCICLIN-LIKE ARABINOGALACTAN PROTEINs (FLAs), which impact plant growth and development, are an excellent example of a glycoprotein family with a complex multidomain structure. FLAs combine globular fasciclin-like (FAS1) domains with regions that are intrinsically disordered and contain glycomotifs for directing the addition of O-linked arabinogalactan (AG) glycans. Additional posttranslational modifications on FLAs include N-linked glycans in the FAS1 domains, a cleaved signal peptide at the N terminus, and often a glycosylphosphatidylinositol (GPI) anchor signal sequence at the C terminus. The roles of glycosylation, the GPI anchor, and FAS1 domain functions in the polysaccharide-rich extracellular matrix of plants remain unclear, as do the relationships between them. In this study, we examined sequence-structure-function relationships of Arabidopsis (Arabidopsis thaliana) FLA11, demonstrated to have roles in secondary cell wall (SCW) development, by introducing domain mutations and functional specialization through domain swaps with FLA3 and FLA12. We identified FAS1 domains as essential for FLA function, differentiating FLA11/FLA12, with roles in SCW development, from FLA3, specific to flowers and involved in pollen development. The GPI anchor and AG glycosylation co-regulate the cell surface location and release of FLAs into cell walls. The AG glycomotif sequence closest to the GPI anchor (AG2) is a major feature differentiating FLA11 from FLA12. The results of our study show that the multidomain structure of different FLAs influences their subcellular location and biological functions during plant development.


Arabidopsis , Plant Proteins , Plant Proteins/metabolism , Mucoproteins/genetics , Mucoproteins/metabolism , Arabidopsis/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism
9.
Plant Sci ; 330: 111643, 2023 May.
Article En | MEDLINE | ID: mdl-36805420

Plant growth and immunity are tightly interconnected. Oligogalacturonic acids (OGs) are pectic fragments and have been well investigated in plant immunity as a damage-associated molecular pattern. However, little is known regarding how OGs affect plant growth. Here, we reveal that OGs inhibit the growth of intact etiolated seedling by using the horticultural crop tomato as a model. This inhibitory effect is partially suppressed by the action of ethylene biosynthesis inhibitors, or the gene silencing of SlACS2, an essential rate-limiting enzyme for ethylene biosynthesis, suggesting that SlACS2-mediated ethylene production promotes OG-induced growth inhibition. Furthermore, OGs treatment elevates the SlACS2 protein phosphorylation, and its decrease by the kinase inhibitor K252a partially rescue OG-induced growth inhibition, indicating that SlACS2 phosphorylation involves in OG-induced growth inhibition. Moreover, the mitogen-activated protein kinase SlMPK3 could be activated by OGs treatment and can directly phosphorylate SlACS2 in vitro, and the bimolecular fluorescence complementation combining with the yeast two-hybrid assay shows that SlMPK3 interacts with SlACS2, indicating that SlMPK3 may participate in modulating the OG-induced SlACS2 phosphorylation and growth inhibition. Our results reveal a regulatory mechanism at both the transcriptional and post-transcriptional levels by which OGs inhibit the growth of intact plant seedlings.


Plant Growth Regulators , Solanum lycopersicum , Plant Growth Regulators/metabolism , Seedlings , Solanum lycopersicum/genetics , Ethylenes/metabolism , Gene Expression Regulation, Plant
10.
J Exp Clin Cancer Res ; 41(1): 352, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36539767

BACKGROUND: Neuroblastoma (NB) is the most common extracranial solid tumor occurring during childhood and high-risk NB patients have a poor prognosis. The amplified MYCN gene serves as an important determinant of a high risk of NB. METHODS: We performed an integrative screen using public NB tissue and cell line data, and identified that SMAD9 played an important role in high-risk NB. An investigation of the super-enhancers database (SEdb) and chromatin immunoprecipitation sequencing (ChIP-seq) dataset along with biological experiments of incorporating gene knockdown and CRISPR interference (CRISPRi) were performed to identify upstream regulatory mechanism of SMAD9. Gene knockdown and rescue, quantitative real-time PCR (Q-RT-PCR), cell titer Glo assays, colony formation assays, a subcutaneous xenograft model and immunohistochemistry were used to determine the functional role of SMAD9 in NB. An integrative analysis of ChIP-seq data with the validation of CRISPRi and dual-luciferase reporter assays and RNA sequencing (RNA-seq) data with Q-RT-PCR validation was conducted to analyze the downstream regulatory mechanism of SMAD9. RESULTS: High expression of SMAD9 was specifically induced by the transcription factors including MYCN, PHOX2B, GATA3 and HAND2 at the enhancer region. Genetic suppression of SMAD9 inhibited MYCN-amplified NB cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that SMAD9 bound to the MYCN promoter and transcriptionally regulate MYCN expression, with MYCN reciprocally binding to the SMAD9 enhancer and transactivating SMAD9, thus forming a positive feedback loop along with the MYCN-associated cancer cell cycle. CONCLUSION: This study delineates that SMAD9 forms a positive transcriptional feedback loop with MYCN and represents a unique tumor-dependency for MYCN-amplified neuroblastoma.


Neuroblastoma , Transcription Factors , Humans , Cell Line, Tumor , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Feedback , Transcription Factors/metabolism , Neuroblastoma/pathology , Gene Expression Regulation, Neoplastic , Smad8 Protein/genetics , Smad8 Protein/metabolism
11.
Plants (Basel) ; 11(17)2022 Sep 02.
Article En | MEDLINE | ID: mdl-36079678

Wall-associated kinases/kinase-likes (WAKs/WAKLs) are plant cell surface sensors. A variety of studies have revealed the important functions of WAKs/WAKLs in regulating cell expansion and defense in cells with primary cell walls. Less is known about their roles during the development of the secondary cell walls (SCWs) that are present in xylem vessel (XV) and interfascicular fiber (IF) cells. In this study, we used RNA-seq data to screen Arabidopsis thaliana WAKs/WAKLs members that may be involved in SCW development and identified WAKL8 as a candidate. We obtained T-DNA insertion mutants wakl8-1 (inserted at the promoter region) and wakl8-2 (inserted at the first exon) and compared the phenotypes to wild-type (WT) plants. Decreased WAKL8 transcript levels in stems were found in the wakl8-2 mutant plants, and the phenotypes observed included reduced stem length and thinner walls in XV and IFs compared with those in the WT plants. Cell wall analysis showed no significant changes in the crystalline cellulose or lignin content in mutant stems compared with those in the WT. We found that WAKL8 had alternative spliced versions predicted to have only extracellular regions, which may interfere with the function of the full-length version of WAKL8. Our results suggest WAKL8 can regulate SCW thickening in Arabidopsis stems.

12.
Front Immunol ; 13: 875593, 2022.
Article En | MEDLINE | ID: mdl-36090996

Background: Biliary atresia (BA) is a childhood liver disease characterized by fibrous obstruction and obstruction of the extrahepatic biliary system and is one of the most common and serious biliary disorders in infants. Significant inflammation and fibrosis of the liver and biliary tract are the most prominent features, regardless of the initial damage to the BA. Abnormalities in innate or adaptive immunity have been found in human patients and mouse models of BA. We previously reported that children with BA had abnormal lipid metabolism, including free serum carnitine. Objective: To study gene and protein expression levels of the hepatic peroxisome proliferator-activated receptor-α (PPARα) signaling pathway and farnesoid X receptor (FXR) in BA and BA fibrosis, and assess their clinical values. Methods: Low expression of PPARα and NR1H4 (FXR) in BA were validated in the Gene Expression Omnibus database. Functional differences were determined by gene set enrichment analysis based on of PPARα and NR1H4 expression. BA patients from GSE46960 were divided into two clusters by using consensus clustering according to PPARα, NR1H4, and SMAD3 expression levels, and immunoinfiltration analysis was performed. Finally, 58 cases treated in our hospital were used for experimental verification. (IHC: 10 Biliary atresia, 10 choledochal cysts; PCR: 10 Biliary atresia, 14 choledochal cysts; WB: 10 Biliary atresia, 4 choledochal cysts). Results: Bioinformatics analysis showed that the expression of PPARα, CYP7A1 and NR1H4 (FXR) in the biliary atresia group was significantly lower than in the control group. More BA-specific pathways, including TGFß signaling pathway, P53 signaling pathway, PI3K-AKT-mTOR signaling pathway, etc., are enriched in BA patients with low PPARα and NR1H4 expression. In addition, low NR1H4 expression is abundant in inflammatory responses, IL6/STAT3 signaling pathways, early estrogen responses, IL2 STAT5 signaling pathways, and TGFß signaling pathways. The TGFß signaling pathway was significant in both groups. According to the expression of PPARα, NR1H4 and SMAD3, a key node in TGFß pathway, BA patients were divided into two clusters using consensus clustering. In cluster 2, SMAD3 expression was high, and PPARα and NR1H4 expression were low. In contrast to cluster 1, immune cell infiltration was higher in cluster 2, which was confirmed by immunohistochemistry. The mRNA and protein levels of PPARα and NR1H4 in BA patients were lower than in the control group by immunohistochemistry, Western blot analysis and real-time PCR. Conclusions: The downregulation of PPARα and NR1H4 (FXR) signaling pathway may be closely related to biliary atresia.


Biliary Atresia , Liver , PPAR alpha , Receptors, Cytoplasmic and Nuclear , Animals , Bile Acids and Salts/immunology , Biliary Atresia/genetics , Biliary Atresia/immunology , Child , Choledochal Cyst/genetics , Choledochal Cyst/metabolism , Fibrosis , Humans , Infant , Liver/immunology , Mice , PPAR alpha/genetics , PPAR alpha/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transforming Growth Factor beta/metabolism
13.
Front Plant Sci ; 13: 817915, 2022.
Article En | MEDLINE | ID: mdl-35222477

Lipid remodeling of Glycosylphosphatidylinositol (GPI) anchors is required for their maturation and may influence the localization and function of GPI-anchored proteins (GPI-APs). Maturation of GPI-anchors is well characterized in animals and fungi but very little is known about this process in plants. In yeast, the GPI-lipid remodeling occurs entirely at the ER and is initiated by the remodeling enzyme Bst1p (Post-Glycosylphosphatidylinositol Attachment to Proteins inositol deacylase 1 -PGAP1- in mammals and Arabidopsis). Next, the remodeling enzyme Per1p (Post-Glycosylphosphatidylinositol Attachment to Proteins phospholipase 3 -PGAP3- in mammals) removes a short, unsaturated fatty acid of phosphatidylinositol (PI) that is replaced with a very long-chain saturated fatty acid or ceramide to complete lipid remodeling. In mammals, lipid remodeling starts at the ER and is completed at the Golgi apparatus. Studies of the Arabidopsis PGAP1 gene showed that the lipid remodeling of the GPI anchor is critical for the final localization of GPI-APs. Here we characterized loss-of-function mutants of Arabidopsis Per1/PGAP3 like genes (AtPGAP3A and AtPGAP3B). Our results suggest that PGAP3A function is required for the efficient transport of GPI-anchored proteins from the ER to the plasma membrane/cell wall. In addition, loss of function of PGAP3A increases susceptibility to salt and osmotic stresses that may be due to the altered localization of GPI-APs in this mutant. Furthermore, PGAP3B complements a yeast strain lacking PER1 gene suggesting that PGAP3B and Per1p are functional orthologs. Finally, subcellular localization studies suggest that PGAP3A and PGAP3B cycle between the ER and the Golgi apparatus.

14.
New Phytol ; 233(4): 1750-1767, 2022 02.
Article En | MEDLINE | ID: mdl-34862967

Secondary cell walls (SCWs) in stem xylem vessel and fibre cells enable plants to withstand the enormous compressive forces associated with upright growth. It remains unclear if xylem vessel and fibre cells can directly sense mechanical stimuli and modify their SCW during development. We provide evidence that Arabidopsis SCW-specific Fasciclin-Like Arabinogalactan-proteins 11 (FLA11) and 12 (FLA12) are possible cell surface sensors regulating SCW development in response to mechanical stimuli. Plants overexpressing FLA11 (OE-FLA11) showed earlier SCW development compared to the wild-type (WT) and altered SCW properties that phenocopy WT plants under compression stress. By contrast, OE-FLA12 stems showed higher cellulose content compared to WT plants, similar to plants experiencing tensile stress. fla11, OE-FLA11, fla12, and OE-FLA12 plants showed altered SCW responses to mechanical stress compared to the WT. Quantitative polymerase chain reaction (qPCR) and RNA-seq analysis revealed the up-regulation of genes and pathways involved in stress responses and SCW synthesis and regulation. Analysis of OE-FLA11 nst1 nst3 plants suggests that FLA11 regulation of SCWs is reliant on classical transcriptional networks. Our data support the involvement of FLA11 and FLA12 in SCW sensing complexes to fine-tune both the initiation of SCW development and the balance of lignin and cellulose synthesis/deposition in SCWs during development and in response to mechanical stimuli.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Lignin/metabolism , Stress, Mechanical
15.
Plant Physiol ; 187(4): 2156-2173, 2021 12 04.
Article En | MEDLINE | ID: mdl-34618080

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) play an important role in a variety of plant biological processes including growth, stress response, morphogenesis, signaling, and cell wall biosynthesis. The GPI anchor contains a lipid-linked glycan backbone that is synthesized in the endoplasmic reticulum (ER) where it is subsequently transferred to the C-terminus of proteins containing a GPI signal peptide by a GPI transamidase. Once the GPI anchor is attached to the protein, the glycan and lipid moieties are remodeled. In mammals and yeast, this remodeling is required for GPI-APs to be included in Coat Protein II-coated vesicles for their ER export and subsequent transport to the cell surface. The first reaction of lipid remodeling is the removal of the acyl chain from the inositol group by Bst1p (yeast) and Post-GPI Attachment to Proteins Inositol Deacylase 1 (PGAP1, mammals). In this work, we have used a loss-of-function approach to study the role of PGAP1/Bst1 like genes in plants. We have found that Arabidopsis (Arabidopsis thaliana) PGAP1 localizes to the ER and likely functions as the GPI inositol-deacylase that cleaves the acyl chain from the inositol ring of the GPI anchor. In addition, we show that PGAP1 function is required for efficient ER export and transport to the cell surface of GPI-APs.


Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Membrane Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Transport/physiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Membrane Proteins/genetics , Phosphoric Monoester Hydrolases/genetics , Protein Transport/genetics
16.
Front Plant Sci ; 11: 615392, 2020.
Article En | MEDLINE | ID: mdl-33362841

The predominant Fascilin 1 (FAS1)-containing proteins in plants belong to the Fasciclin-Like Arabinogalactan-protein (FLA) family of extracellular glycoproteins. In addition to FAS1 domains, these multi-domain FLA proteins contain glycomotif regions predicted to direct addition of large arabinogalactan (AG) glycans and many contain signal sequences for addition of a glycosylphosphatidylinositol (GPI)-anchor to tether them to the plasma membrane. FLAs are proposed to play both structural and signaling functions by forming a range of interactions in the plant extracellular matrix, similar to FAS1-containing proteins in animals. FLA group B members contain two FAS1 domains and are not predicted to be GPI-anchored. None of the group B members have been functionally characterized or their sub-cellular location resolved, limiting understanding of their function. We investigated the group B FLA16 in Arabidopsis that is predominantly expressed in inflorescence tissues. FLA16 is the most highly expressed FLA in the stem after Group A members FLA11 and FLA12 that are stem specific. A FLA16-YFP fusion protein driven by the endogenous putative FLA16 promoter in wild type background showed expression in cells with secondary cell walls, and FLA16 displayed characteristics of cell wall glycoproteins with moderate glycosylation. Investigation of a fla16 mutant showed loss of FLA16 leads to reduced stem length and altered biomechanical properties, likely as a result of reduced levels of cellulose. Immuno-labeling indicated support for FLA16 location to the plasma-membrane and (apoplastic) cell wall of interfascicular stem fiber cells. Together these results indicate FLA16, a two-FAS1 domain FLAs, plays a role in plant secondary cell wall synthesis and function.

17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 33(9): 1147-1150, 2019 Sep 15.
Article Zh | MEDLINE | ID: mdl-31512457

OBJECTIVE: To compare the biomechanical properties of two ultra-strong sutures and suturing methods in panda rope bridge technique (PRBT) application, and provide guidance for clinical selection of suture threads and suture methods. METHODS: Forty Achilles tendons from bulls were randomly divided into 4 groups ( n=10) and transected at the 4 cm proximal to the tendon insertion. Groups A and B used Ethibond sutures (USP 5), the proximal end was fixed at the myotendious junction with Krackow sutures and the distal end was fixed through a calcaneus canal. Groups A and B had 4 and 8 threads through the stump plane, respectively. Groups C and D used Ultrabraid sutures (USP 2), the proximal end was fixed at the myotendious junction with Krackow sutures and the distal end was fixed in the calcaneus with two anchors. Groups C and D had 4 and 8 threads through the stump plane, respectively. The dynamic tensile forces of 20-100, 20-200, 20-300, and 20-400 N were tested respectively by using a dynamic tensile testing machine at 0.5 Hz for 250 cycles. After each stage of testing, the gap between stumps was measured with a caliper and the type of suture failure was recorded. RESULTS: After dynamic tensile forces of 20-100 N and 20-200 N, the gaps of the four groups arranged from small to large were groups D, B, C, and A. The differences between groups A and B and groups C and D were significant ( P<0.05). But after dynamic tensile forces of 20-300 N and 20-400 N, the gaps were more than 5 mm in all groups. The suture retention rates of the four groups after dynamic tensile forces of 20-100 N and 20-200 N were all 100%. The suture retention rates of groups A, B, C, and D were 0, 80%, 60%, and 100%, respectively after dynamic tensile forces of 20-300 N. The differences of suture retention rates between group A and groups B and D were significant ( P<0.05). There was no significant difference between groups B, C, and D ( P>0.05). After dynamic tensile forces of 20-400 N, the suture retention rates of groups A, B, C, and D were 0, 50%, 0, and 70%, respectively. There were significant differences between groups A and B and groups C and D ( P<0.05). CONCLUSION: Repairing Achilles tendon rupture via PRBT with 8 ultra-strong sutures through the stump plane can meet the mechanical requirements for walking by using ankle boots and heel pads in the early accelerated rehabilitation after operation.


Achilles Tendon , Suture Techniques , Sutures , Tendon Injuries , Achilles Tendon/surgery , Animals , Biomechanical Phenomena , Cattle , Male , Suture Techniques/standards , Tensile Strength
18.
BMC Plant Biol ; 16: 13, 2016 Jan 09.
Article En | MEDLINE | ID: mdl-26748512

BACKGROUND: Oligogalacturonic acids (OGs) are oligomers of alpha-1,4-linked galacturonosyl residues that are released from cell walls by the hydrolysis of polygalacturonic acids upon fruit ripening and under abiotic/biotic stress. OGs may induce ethylene production and fruit ripening, however, the mechanism(s) behind these processes is unknown. RESULTS: Tomato cultivar 'Ailsa Craig' (AC) and mutant Neverripe, ripening inhibitor, non-ripening, and colorless non-ripening fruits were treated with OGs at different stages. Only AC fruits at mature green stage 1 showed an advanced ripening phenomenon, although transient ethylene production was detected in all of the tomato fruits. Ethylene synthesis genes LeACS2 and LeACO1 were rapidly up-regulated, and the phosphorylated LeACS2 protein was detected after OGs treatment. Protein kinase/phosphatase inhibitors significantly affected the ripening process induced by the OGs. As a potential receptor of OGs, LeWAKL2 was also up-regulated in their presence. CONCLUSIONS: We demonstrated that OGs promoted tomato fruit ripening by inducing ethylene synthesis through the regulation of LeACS2 at transcriptional and post-translational levels.


Amino Acids, Cyclic/biosynthesis , Fruit/growth & development , Oligosaccharides/physiology , Solanum lycopersicum/genetics , Ethylenes/biosynthesis , Lyases/genetics , Solanum lycopersicum/metabolism , Transcription, Genetic
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(6): 1643-8, 2015 Jun.
Article Zh | MEDLINE | ID: mdl-26601383

Metacaspases are cysteine-dependent proteases found in protozoa, fungi and plants and are distantly related to metazoan caspases. Most of MCPs activation are the calcium dependent, but the mechanisms are still unknown. Based on the techniques of CD spectroscopy, fluorescence spectroscopy, and Terbium Stains-all probe, we selected three purified recombinant proteins from key residues mutated in tomato metacaspase (LeMCA1), including conserved catalytic site (C139A) mutant, N-sequenced cleaved site (K223G) mutant and the predicted Ca2+ binding sites (D116A/D117A) mutant, to explore the interaction mechanism of LeMCA1 and Ca2+. CD spectroscopy and Stains-all probe results suggested that the intense binding does not exist between LeMCA1 and Ca2+ as well as Ca2+ has little effect on the secondary structure of LeMCA1. However, fluorescence spectroscopy and Tb3+ probe results showed that Ca(2+)-induced the changes occur in the tertiary structure of LeMCA1, which contributes to the activation of zymogen. In addition, predicted Ca2+ binding residues, Asp-116 and Asp117, are the key sites resporisible for the Ca2+ interaction with LeMCA1, and the loss of these two residues resulted in decreased interaction. Our data firstly provided insight on the mechanism of the interaction between Ca2+ and recombinant purified Solanaceae type II metacaspase by spectroscopy and molecular probe techniques. Combined the results we got before from sequence-alignment and sites-mutation, the key residues Asp-116 and Asp117 affect the Ca(2+)-induced the changes of LeMCA1 tertiary structure. Our data provided information for the further biochemical and crystal assays of LeMCA1.


Calcium/metabolism , Caspases/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Binding Sites , Catalytic Domain , Molecular Probes , Protein Structure, Secondary , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Terbium
...