Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 263(Pt 1): 119983, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39270958

RESUMEN

An efficient catalyst of molybdenum disulfide (MoS2) coupled with ball milling modified sludge biochar (BMSBC) was prepared to efficiently activate peroxymonosulfate (PMS) for neonicotinoids elimination. As expected, 95.1% of imidacloprid (IMI) was degraded by PMS/BMSBC system within 60 min and it was accompanied by the outstanding mineralization rate of 71.9%. The superior pore structures, rich defects, oxygen-containing functional groups and grafted MoS2 on BMSBC offered excellent activation performance for PMS. The influencing factor experiments demonstrated that PMS/BMSBC system performed high anti-interference to wide pH range and background constituents (e.g., inorganic ions and humic acid). Quenching experiments and electron paramagnetic resonance analysis revealed that SO4•-, 1O2, and surface-bound radicals played critical roles in IMI degradation. Electron donors on biochar activated PMS, producing surface radicals. The lone pair electrons within the Lewis basic site of C=O on BMSBC enhanced PMS decomposition by facilitating the cleavage of the -O-O- bond in PMS to release 1O2. The activation process of PMS by MoS2 accelerated the oxidation of Mo (IV) to Mo (VI) to generate SO4•-. Based on the transformed products (TPs), four degradation pathways of IMI in PMS/BMSBC system were suggested, and all TPs toxicity levels were lower than that of IMI by ECOSAR analysis. Additionally, BMSBC exhibited outstanding sustainable catalytic activity towards PMS activation with the well accepted degradation rate of 71.3% for IMI even after five reuse cycles. PMS/BMSBC system also exhibited satisfactory degradation rates (>71.8%) for IMI in various real waters (e.g., sewage effluent and livestock wastewater). Furthermore, PMS/BMSBC system also offered a favorable broad-spectrum elimination performance for other typical neonicotinoids (e.g., thiamethoxam, clothianidin, thiacloprid) with the degradation rates over 98%. This study has developed a desirable neonicotinoids purification technology in view of its high degradation/mineralization rate, outstanding detoxification performance, satisfied anti-interference to ambient conditions and sustainable sludge management.

2.
Environ Pollut ; 359: 124681, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39134167

RESUMEN

Developing non radical systems for antibiotic degradation is crucial for addressing the inefficiency of conventional radical systems. In this study, novel magnetic-modified sludge biochar (MASBC) was synthesized to significantly enhance the oxidative degradation of sulfamethoxazole (SMX) by ferrate (Fe (VI)). In the Fe (VI)/MASBC system, 90.46% of SMX at a concentration of 10 µM and 49.34% of the total organic carbon (TOC) could be removed under optimal conditions of 100 µM of Fe (VI) and 0.40 g/L of MASBC within 10 min. Furthermore, the Fe (VI)/MASBC system was demonstrated with broad-spectrum removal capability towards sulfonamides in single or mixture. Quenching experiments, EPR analyses, and electrochemical experiments revealed that direct electron transfer (DET) and •O2- were mainly responsible for the removal of SMX, with functional groups (e.g., -OH, C=O) and Fe-O (redox of Fe (III)/Fe (II)) acting as the active sites, while the probe experiments showed that Fe (IV)/Fe (V) made a minor contribution to the degradation of SMX. Benefiting from the DET, the Fe (VI)/MASBC system exhibited a wide pH adaptation range (e.g., from 5.0 to 10.0) and strong anti-interference ability. The N atoms and their neighboring atoms in SMX were the prior degradation sites, with the cleavage of bond and ring opening. The degradation products showed low or non-toxicity according to ECOSAR program assessment. The removal of SMX remained within a reasonable range of 71.33%-90.46% over five consecutive cycles. Also, the Fe (VI)/MASBC system was demonstrated to be effectively applied for successful SMX removal in various water matrices, including ultrapure water, tap water, lake water, Yangtze River water, and wastewater. Therefore, this study offered new insights into the mechanism of Fe (VI) oxidation and would contribute to the efficient treatment of organic pollutants.


Asunto(s)
Carbón Orgánico , Hierro , Oxidación-Reducción , Aguas del Alcantarillado , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/química , Carbón Orgánico/química , Hierro/química , Contaminantes Químicos del Agua/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos
3.
Chemosphere ; 363: 142855, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019195

RESUMEN

This study aimed to design an efficient and easily collected/regenerated adsorbent for trace concentration sulfamethoxazole (SMX) removal to eliminate its negative impacts on human health, reduce the risk of adsorbed SMX release and boost the reusability of adsorbent. Various multiple modified sludge-derived biochars (SBC) were synthesized in this work and applied to adsorb trace level SMX. The results demonstrated that hydrothermal N-doping, magnetization coupled with ball milling co-functionalized SBC (BMNSBC) displayed the greater adsorption ability for SMX. The maximum adsorption capacity of BMNSBC for SMX calculated by Langmuir model was 1.02 × 105 µg/g, which was 12.9 times of SBC. Characterization combined with adsorption experiments (e.g., models fitting) and DFT calculation confirmed that π-π conjugation, Lewis acid-base, pore filling and Fe3O4 complexation were the primary forces driving SMX binding to BMNSBC. These diversified physicochemical forces contributed to the fine anti-interference of BMNSBC to background substances (e.g., inorganic compounds and organic matter) and its remarkable adsorption ability for SMX in diverse real waters. The great magnetization strength of BMNSBC was advantage for its collection and efficient regeneration by NaOH desorption. Additionally, BMNSBC exhibited an outstanding security in view of its low leaching levels of iron (Fe) and total nitrogen (TN). The multiple superiority of BMNSBC enable it to be a prospective material for emerging contaminants (e.g., SMX) purification, also offering a feasible disposal approach for municipal waste (e.g., sludge).


Asunto(s)
Carbón Orgánico , Aguas del Alcantarillado , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/química , Sulfametoxazol/análisis , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Aguas del Alcantarillado/química , Purificación del Agua/métodos
4.
Bioresour Technol ; 407: 131103, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002884

RESUMEN

A novel UV/oxalic acid functionalized corn straw biochar (OCBC)/peroxyacetic acid (PAA) system was built to degrade sulfadiazine from waters. 94.7 % of SDZ was removed within 30 min by UV/OCBC/PAA. The abundant surface functional groups and persistent free radicals (PFRs) on OCBC were responsible for these performances. Cyclic voltammetry (CV) and other characterization analysis revealed, under UV irradiation, the addition of OCBC served as electron donor, which might promote the reaction of electrons with PAA. The quenching and electron paramagnetic resonance (EPR) tests indicated that R-O•, 1O2 and •OH were generated. Theoretical calculations indicated sulfonamide bridge was vulnerable under the attacks of reactive species. In addition, high removal effect achieved by 5 reuse cycles and different real waters also suggested the sustainability of UV/OCBC/PAA. Overall, this study provided a feasible approach to remove SDZ with high mineralization efficiency, in addition to a potential strategy for resource utilization of corn straw.


Asunto(s)
Carbón Orgánico , Ácido Oxálico , Ácido Peracético , Sulfadiazina , Rayos Ultravioleta , Zea mays , Zea mays/química , Carbón Orgánico/química , Ácido Peracético/química , Sulfadiazina/química , Ácido Oxálico/química , Transporte de Electrón , Contaminantes Químicos del Agua , Purificación del Agua/métodos
5.
Environ Res ; 257: 119294, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823609

RESUMEN

Conventional electrochemical activation of peroxymonosulfate (PMS) is not very cost-effective and practical by the excessive input of energy. The electricity generated by photosynthetic microalgae fuel cells (MFCs) is utilized to activate PMS, which would achieve the combination of green bioelectricity and advanced oxidation processes for sustainable pollutants degradation. In this study, a novel dual-chamber of MFCs was constructed by using microalgae as anode electron donor and PMS as cathode electron acceptor, which was operating under both close-circuit and open-circuit conditions. Under close-circuit condition, 1-12 mM PMS in cathode was successfully in situ activated, where 32.00%-99.83% of SMX was removed within 24 h, which was about 1.21-1.78 times of that in the open-circuit of MFCs. Meanwhile, a significant increase in bioelectricity generation in MFCs was observed after the accumulation of microalgae biomass (4.65-5.37 mg/L), which was attributed to the efficient electron separation and transfer. Furthermore, the electrochemical analysis demonstrated that SMX or its products were functioned as electronic shuttles, facilitating the electrochemical reaction and altering the electrical capacitance. The quenching experiments and voltage output results reflected that complex active radical (SO4⋅-, ⋅OH, and 1O2) were involved in SMX removal. Seven degradation products of SMX were detected and S-N bond cleavage was the main degradation pathway. Predicted toxicity values calculated by ECOSAR program showed that all the products were less toxic or nontoxic. Finally, the density functional theory (DFT) calculations revealed that the O and N atoms on SMX were more susceptible to electrophilic reactions, which were more vulnerable to be attacked by reactive species. This study provided new insights into the activation of PMS by bioelectricity for SMX degradation, proposing the mechanisms for PMS activation and degradation sites of SMX.


Asunto(s)
Fuentes de Energía Bioeléctrica , Sulfametoxazol , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Sulfametoxazol/química , Peróxidos/química , Microalgas/efectos de los fármacos , Microalgas/química , Oxidación-Reducción
6.
Chemosphere ; 357: 141983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631501

RESUMEN

Neonicotinoid insecticides (NNIs) have attracted global concern due to its extensive use in agricultural activities and their potential risks to the animal and human health, however, there is limited knowledge on the regional traits and ecological risks of NNIs in the aquatic environments. We herein investigated the occurrence of NNIs within the midsection of Yangtze River in China, offering the inaugural comprehensive report on NNIs within this region. In this study, eleven NNIs were analyzed in 108 river water and sediment samples from three seasons (normal, dry and wet season). We detected a minimum of seven NNIs in the water and four NNIs in the sediment, with total concentrations ranging from 12.33 to 100.5 ng/L in water and 0.08-5.68 ng/g in sediment. The levels of NNIs in both river water and sediment were primarily influenced by the extent of agricultural activities. The estimated annual load of NNIs within the midsection of Yangtze River totaled 40.27 tons, April was a critical contamination period. Relative potency factor (RPF) analysis of the human exposure risk revealed that infants faced the greatest exposure risk, with an estimated daily intake of 11.27 ng kg-1∙bw∙d-1. We established the acute and chronic thresholds for aquatic organisms by employing the Species Sensitive Distribution (SSD) method (acute: 384.1 ng/L; chronic: 168.9 ng/L). Based on the findings from this study, 33% of the river water samples exceeded the chronic ecological risks thresholds, indicating the urgent need for intervention programs to guarantee the safety of the river for aquatic life in the Yangtze River Basin.


Asunto(s)
Monitoreo del Ambiente , Insecticidas , Neonicotinoides , Ríos , Contaminantes Químicos del Agua , Ríos/química , China , Insecticidas/análisis , Insecticidas/toxicidad , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Humanos , Neonicotinoides/análisis , Animales , Sedimentos Geológicos/química , Estaciones del Año , Agricultura , Análisis Espacio-Temporal
7.
J Hazard Mater ; 465: 133026, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38006858

RESUMEN

A novel approach of ball milling and oxalic acid was employed to modify sludge-based biochar (BOSBC) to boost its activation performance for peroxymonosulfate (PMS) towards efficient degradation of sulfamethoxazole (SMX). 98.6% of SMX was eliminated by PMS/BOSBC system within 60 min. Furthermore, PMS/BOSBC system was capable of maintaining high removal rates for SMX (>88.8%) in a wide pH range from 3 to 9, and displayed a high tolerance to background electrolytes including inorganic ions and humic acid (HA). Quenching experiments, electron paramagnetic resonance (EPR) analysis, in-situ Raman characterization and PMS decomposition experiments confirmed that the non-radicals of 1O2 and surface-bound radicals were the main contributors to SMX degradation by PMS/BOSBC system. The results of ecotoxicity assessment illustrated that all transformed products (TPs) generated in PMS/BOSBC system were less toxic than that of SMX. After five reuse cycles, PMS/BOSBC system still maintained a high removal rate for SMX (77.8%). Additionally, PMS/BOSBC system exhibited excellent degradation performance for SMX in various real waters (Yangtze River water (76.5%), lake water (74.1%), tap water (86.5%), and drinking water (98.1%)). Overall, this study provided novel insights on non-metal modification for sludge-based biochar and non-radical mechanism, and offered a feasible approach for municipal sludge disposal.


Asunto(s)
Carbón Orgánico , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/química , Aguas del Alcantarillado , Ácido Oxálico , Contaminantes Químicos del Agua/química , Peróxidos/química , Agua
8.
Bioresour Technol ; 381: 129119, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37141998

RESUMEN

Tetracycline (TC) and sugarcane bagasse had both exerted enormous strain on environmental security. In this work, new composite adsorbent designed by impregnating bio-waste bagasse with magnesium-aluminum layered double oxides (BC-MA) was innovatively brought forward for TC removal. Benefiting from the abundant adsorption sites supplied by developed pores structure (0.308 cm3·g-1), enlarged surface area (256.8 m2·g-1) and reinforced functional groups, the maximum adsorption amount of BC-MA for TC reached 250.6 mg g-1. Moreover, BC-MA displayed desirable adsorption capacity in diverse water environments coupled with excellent sustainable regeneration ability. The absorption process of TC by BC-MA was spontaneous and endothermic, and the pivotal rate-limiting stage pertained to intraparticle diffusion. The mechanisms proposed here mainly concerned π-π interactions, pore filling, complexation and hydrogen bonding. These findings suggested that the synthesis of modified biochar from bagasse would offer new opportunities for simultaneous waste resource reuse and water pollution control.


Asunto(s)
Saccharum , Contaminantes Químicos del Agua , Celulosa , Agua , Óxidos , Contaminantes Químicos del Agua/química , Cinética , Tetraciclina/química , Antibacterianos , Carbón Orgánico/química , Adsorción
9.
Sci Total Environ ; 885: 163772, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37149176

RESUMEN

This work is the first time to investigate the annual flux, spatiotemporal changes and sources of PCBs and PBDEs in water and sediment from the middle reach of Yangtze River (Wuhan, China), which was particularly based on the monthly monitoring data in a one-year-round study. The concentrations of PCBs and PBDEs in water were

Asunto(s)
Bifenilos Policlorados , Contaminantes Químicos del Agua , Bifenilos Policlorados/análisis , Ríos , Éteres Difenilos Halogenados/análisis , Monitoreo del Ambiente/métodos , Ecosistema , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/análisis , China , Agua/análisis
11.
Environ Geochem Health ; 45(10): 7405-7424, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36788152

RESUMEN

This study investigated the sources, contamination and ecological risks of polycyclic aromatic hydrocarbons (PAHs) based on their spatiotemporal distribution in aquatic environment in the Wuhan section of the Yangtze River (WYR). The fugacity ratio evaluation indicated that sediment was secondary release sources of two- and three-ring PAHs and sinks of four- and five-ring PAHs. The total concentrations of PAHs (Σ16PAHs) ranged from 2.51 to 102.5 ng/L in water with the dominant contribution of 47.8% by two-ring PAHs. Σ16PAHs in sediments varied from 5.90 to 2926 ng/g with the contribution of 35.4% by four-ring PAHs. The higher levels of PAHs occurred around developed industrial areas during the wet season, which was related to local industrial emissions and influenced by rainfall/runoff. Annual flux of Σ16PAHs was estimated of 28.77 t. The PMF model analysis revealed that petroleum and industrial emissions were the dominant sources in water accounting for 58.5% of the total pollution, although traffic emission was the main source for sediment accounting for 44.6%. Risk assessments showed that PAHs in water were at low risks, whereas about 44% of the sediments were identified as medium risks. Therefore, energy structure adjustment and further implement of regulation and monitoring are necessary to reduce PAH emissions.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , China
12.
Environ Pollut ; 319: 121010, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608732

RESUMEN

First time, this study synthesized a magnetic-modified sludge biochar (MSBC) as an activator of peroxymonosulfate (PMS) to eliminate sulfamethoxazole (SMX). The removal efficiency of SMX reached 96.1% at t = 60 min by PMS/MSBC system. The larger surface area and magnetic Fe3O4 of MSBC surface enhanced its activation performance for PMS. The PMS decomposition, premixing and reactive oxygen species (ROS) identification experiments combined with Raman spectra analysis demonstrated that the degradation process was dominated by surface-bound radicals. The transformed products (TPs) of SMX and the main degradation pathways were identified and proposed. The ecotoxicity of all TPs was lower than that of SMX. The magnetic performance was beneficial for its reuse and the removal efficiency of SMX was 83.3% even after five reuse cycles. Solution pH, HCO3- and CO32- were the critical environmental factors affecting the degradation process. MSBC exhibited environmental safety for its low heavy metal leaching. PMS/MSBC system also performed excellent removal performance for SMX in real waters including drinking water (88.1%), lake water (84.3%), Yangtze River water (83.0%) and sewage effluent (70.2%). This study developed an efficient PMS activator for SMX degradation in various waters and provided a workable way to reuse and recycle municipal sludge.


Asunto(s)
Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/química , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Peróxidos/química , Agua , Fenómenos Magnéticos
13.
Sci Total Environ ; 859(Pt 1): 160001, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368385

RESUMEN

Highly efficient and stable heterogeneous catalysts were desired to activate periodate (PI) for sustainable pollution control. Herein, iron-nitrogen-carbon catalyst was synthesized using a facile molten-salts mediated pyrolysis strategy (denoted as FeNC-MS) and employed to activate PI for the degradation of acetaminophen (ACE). Compared with iron-nitrogen-carbon catalyst prepared by direct pyrolysis method (marked as FeNC), FeNC-MS exhibited superior catalytic activity due to its large specific surface area (1600 m2 g-1) and the abundance of FeNx sites. The batch experiments revealed that FeNC/PI process achieved 37 % ACE removal within 20 min, while ACE removal in FeNC-MS/PI process was 98 % under the identical conditions. Integrated with electron paramagnetic resonance tests, quenching experiments, chemical probe identification, and electrochemical experiments, we demonstrated that FeNC-MS-PI complexes-mediated electron transfer was the predominant mechanism for the oxidation of ACE. Further analysis disclosed that FeNx sites in FeNC-MS were the main active sites for the activation of PI. Additionally, FeNC-MS/PI process exhibited significant resistance to humic acid and background electrolyte, and avoided the secondary pollution imposed by Fe leaching. The possible degradation pathways of ACE were proposed. The germination experiments of lettuce seeds showed that the ecotoxicity of ACE solution was significantly reduced after treatment with FeNC-MS/PI process. Overall, this study provided a facile strategy for the synthesis of efficient iron-nitrogen-carbon catalysts and gained fundamental insight into the mechanism of PI activation by iron-nitrogen-carbon catalysts for pollutants degradation.


Asunto(s)
Carbono , Nitrógeno , Nitrógeno/química , Carbono/química , Hierro/química , Acetaminofén/química , Peróxidos/química , Sales (Química)
14.
Environ Sci Pollut Res Int ; 30(5): 12571-12583, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36112289

RESUMEN

A novel iron-biochar composite adsorbent was produced via ball milling-assisted one-pot pyrolyzed BM-nZVI-BC 800. Characterization proved that nano zero valent iron was successfully embedded in the newly produced biochar, and the nZVI payload was higher than that of traditional one-pot pyrolyzed methods. BM-nZVI-BC 800 provided a high adsorption performance of cadmium reaching 96.40 mg·g-1 during batch testing. Alkaline conditions were beneficial for cadmium removal of BM-nZVI-BC 800. The pseudo-second-order kinetic model and Langmuir isotherm fitted better, demonstrating that the Cd adsorption on the BM-nZVI-BC 800 was a chemical and surface process. The intraparticle diffusion controlled the adsorption of BM-nZVI-BC 800. The physisorption dominated by high specific surface area and mesoporous structure was the primary mechanism in the removal of cadmium, though electrostatic attraction and complexation also played a secondary role in cadmium adsorption. Compared to adsorbents prepared by more traditional methods, the efficiencies of the ball milling-assisted one-pot pyrolyzed method appears superior.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/química , Cadmio , Contaminantes Químicos del Agua/análisis , Agua/química , Carbón Orgánico/química , Adsorción
15.
Bioresour Technol ; 369: 128385, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36423760

RESUMEN

The clusters formed by modified materials on its surface makes the application of functionalized biochars in adsorption face a great challenge. Here, a facile ball milling technology was innovatively proposed to tailor Fe-Al oxides-laden bagasse biochar to fabricate a novel adsorbent (BMFA-BC). Benefited from the increased exposure of Fe-Al oxides and, more importantly, enhanced functional groups by ball milling, the adsorption capacity of BMFA-BC for aqueous tetracycline reached up to 116.6 mg g-1 at 298 K. And the adsorption performance was temperature-dependent. Characterization analysis, batch sorption (thermodynamics, kinetics, isotherms, chemical factors) as well as data modeling illustrated that this superior adsorption ability could be attributed to π-π conjugation, H-bonding, complexation as well as pore filling. BMFA-BC displayed good adsorption capacity in multiple aqueous environments. The excellent regeneration ability, magnetic susceptibility ensured its viability for sustainable pollutants removal. These superiorities revealed that BMFA-BC was a suitable sorbent for antibiotics elimination.


Asunto(s)
Compuestos Heterocíclicos , Contaminantes Químicos del Agua , Óxidos , Agua , Adsorción , Antibacterianos/análisis , Tetraciclina , Carbón Orgánico/química , Contaminantes Químicos del Agua/análisis , Cinética
16.
J Hazard Mater ; 444(Pt A): 130336, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403449

RESUMEN

Neonicotinoids pose potential serious risks to human health even at environmental concentration and their removal from water is considered as a great challenge. A novel ball milling and acetic acid co-modified sludge biochar (BASBC) was the first time synthesized, which performed superior physicochemical characteristics including larger surface area, more defect structures and functional groups (e.g., CO and -OH). Electrochemistry was introduced to enhance BASBC for peroxymonosulfate (PMS) activation (E/BASBC/PMS) to degrade environmental concentration neonicotinoids (e.g., imidacloprid (IMI)). The degradation efficiency of IMI was 95.2% within 60 min (C0 (PMS)= 1 mM, E= 25 V, m (BASBC)= 10 mg). Solution pH and anionic species/concentrations were critical affecting factors. The scavenging and electron paramagnetic resonance experiments suggested that •OH and 1O2 were the dominant reactive oxygen species contributing to IMI degradation. Three degradation pathways were proposed and pathway Ⅲ was the main one. 86.1% of IMI were mineralized into non-toxic CO2 and H2O, and others were converted into less toxic intermediates. Also, E/BASBC/PMS system achieved the sustainable degradation of IMI in the cycle experiments. Additionally, it exhibited excellent degradation performance for other three typical neonicotinoids (96.6% of thiacloprid (THI), 96.5% of thiamethoxam (THX) and 82.6% of clothianidin (CLO)) with high mineralization efficiencies (87.8% of THI, 90.5% of THX and 75.4% of CLO).


Asunto(s)
Ácido Acético , Aguas del Alcantarillado , Humanos , Electroquímica , Neonicotinoides , Tiametoxam
17.
Environ Toxicol Chem ; 42(3): 605-619, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36582153

RESUMEN

To our knowledge, ours is the first study to investigate the annual fluxes, environmental fate, and ecological risks of five categories of antibiotics from the Wuhan section of the Yangtze River (China). All the 24 antibiotics we tested for were detected in water, with total concentrations of 17.11-867.2 ng/L (mean: 63.69 ng/L), and 19 antibiotics were detected in sediment, at 0.02-287.7 ng/g (mean: 16.54 ng/g). Sulfonamides, amphenicols, and macrolides were the three most prominent antibiotic classes in water, and fluoroquinolones were the most prominent in sediment. Farming activities (animal husbandry and aquaculture) are proposed as the largest contributors to antibiotic pollution in the Wuhan section of the Yangtze River according to the Unmix model, followed by municipal wastewater and mixed sources. Higher pollution levels were observed downstream (combined discharge of these sources). Monthly monitoring data (12 months) were used to estimate antibiotic annual fluxes, with 101.5 t (uncertainty: 5.6%) in the Wuhan section of the Yangtze River. Risk assessments showed that erythromycin, clarithromycin, and azithromycin posed medium and high ecological risks and were found in 9%-35% and 1.8%-3.7% of all water samples, respectively; enrofloxacin, clarithromycin, azithromycin, florfenicol, and thiamphenicol posed medium resistance risks in 1.9%-16.7% of waters in the Wuhan section of the Yangtze River. Our results have filled data gaps on antibiotic sources, annual fluxes, and resistance risk in the Wuhan section of the Yangtze River and demonstrated the importance of further management of antibiotic use in the studied areas. Environ Toxicol Chem 2023;42:605-619. © 2022 SETAC.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Animales , Antibacterianos/análisis , Contaminantes Químicos del Agua/análisis , Azitromicina , Claritromicina , Monitoreo del Ambiente , China , Medición de Riesgo , Agua
18.
J Hazard Mater ; 439: 129613, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35863233

RESUMEN

Manganese oxide-activated persulfate plays a critical role in water purification and in situ chemical oxidation processes, but the underlying mechanism needs to be further revealed. Herein, the detailed mechanism of MnO2 with various crystallographic structures (α-, ß-, γ-, and δ-MnO2) towards peroxymonosulfate (PMS) activation was investigated. PMS activated by tunnel structured α-, ß-, and γ-MnO2 showed higher acetaminophen (ACE) removal than layer structured δ-MnO2 with the removal efficiency following an order of α-MnO2 (85%) ≈ Î³-MnO2 (84%) > ß-MnO2 (65%) > Î´-MnO2 (31%). Integrated with chemical quenching experiments, electron paramagnetic resonance, Raman spectra, X-ray photoelectron spectroscopy, and Langmuir-Hinshelwood model on kinetic data, both surface-bound PMS complexes and direct oxidation by surface manganese species (Mn(Ⅳ, Ⅲ)(s)) were disclosed as the dominant oxidation mechanism for ACE degradation in α-, ß-, and γ-MnO2/PMS, which were rarely observed in previous reports. Moreover, the catalytic activity of α-, ß-, and γ-MnO2 was positively correlated to the MnIII(s) content on the catalyst surface. Higher content of MnIII(s) would stimulate the generation of more oxygen vacancies, which was conducive to the adsorption of PMS and the formation of reactive complexes. Overall, this study might provide deeper insight into the nonradical activation mechanism of PMS over different crystallographic MnO2.

19.
Chemosphere ; 305: 135418, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35750233

RESUMEN

Neonicotinoids, such as Imidacloprid (IMI), are frequently detected in water and wastewater, posing a threat on both the environment and the health of living things. In this work, a novel algae-bacteria biofilm reactor (ABBR) was constructed to remove IMI and conventional nutrients from municipal wastewater, aiming to explore the removal effect and advantage of ABBR. Results showed that ABBR achieved 74.9% removal of IMI under 80 µmol m-2·s-1 light, higher than photobioreactor (PBR) without biofilm (61.2%) or ABBR under 40 µmol m-2·s-1 light (48.4%) after 16 days of operation. Moreover, it also showed that ABBR allowed a marked improvement on the removal of total dissolved nitrogen (TDN), total dissolved phosphorus (TDP) and soluble chemical oxygen demand (sCOD). ABBR showed different IMI removal efficiencies and bacterial communities under different light conditions, indicating that light played an important role in driving ABBR. The merits of ABBR are including (i) ABBR showed rapid pollutant removal in a short time, (ii) in ABBR, stable consortiums were formed and chlorophyll content in effluent was very low, (iii) compared with PBR, degradation products in ABBR showed lower biological toxicity. Our study highlights the benefits of ABBR on IMI removing from municipal wastewater and provides an effective and environment-friendly engineering application potential of IMI removal.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Bacterias , Biopelículas , Reactores Biológicos , Iluminación , Neonicotinoides , Nitrocompuestos , Nitrógeno , Nutrientes , Fósforo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología
20.
Bioresour Technol ; 359: 127468, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35710050

RESUMEN

Both ciprofloxacin (CIP) and sugarcane bagasse have brought enormous pressure on environmental safety. Here, an innovative technique combining Fe-Mg-layered double oxides and ball milling was presented for the first time to convert bagasse-waste into a new biochar adsorbent (BM-LDOs-BC) for aqueous CIP removal. The maximum theoretical adsorption capacity of BM-LDOs-BC reached up to 213.1 mg g-1 due to abundant adsorption sites provided by well-developed pores characteristics and enhanced functional groups. The results of characterization, data fitting and environmental parameter revealed that pore filling, electrostatic interactions, H-bonding, complexation and π-π conjugation were the key mechanisms for CIP adsorptive removal. BM-LDOs-BC exhibited satisfactory environmental safety and outstanding adsorption capacity under various environmental situations (pH, inorganic salts, humic acid). Moreover, BM-LDOs-BC possessed excellent reusability. These superiorities illustrated that BM-LDOs-BC was a promising adsorbent and created a new avenue for rational placement of biowaste and high-efficiency synthesis of biochar for antibiotic removal.


Asunto(s)
Saccharum , Contaminantes Químicos del Agua , Adsorción , Celulosa , Carbón Orgánico/química , Ciprofloxacina , Hierro , Cinética , Magnesio , Óxidos , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA