Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Total Environ ; 902: 166133, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37567294

With the intensifying climate change and the strengthening ecosystem management, quantifying the past and predicting the future influence of these two factors on vegetation change patterns in China need to be analyzed urgently. By constructing a framework model to accurately identify fractional vegetation coverage (FVC) change patterns, we found that FVC in China from 1982 to 2018 mainly showed linear increase (29.5 %) or Gaussian decrease (27.4 %). FVC variation was mainly affected by soil moisture in the Qi-North region and by vapor pressure deficit in other regions. The influence of environmental change on FVC, except for Yang-Qi region in the southwest (-2.0 %), played a positive role, and weakened from the middle (Hu-Yang region: 2.7 %) to the northwest (Qi-North region: 2.4 %) to the east (Hu-East region: 0.8 %). Based on five machine learning algorithms, it was predicted that under four Shared Socioeconomic Pathways (SSPs, including SSP126、SSP245、SSP370、SSP585) from 2019 to 2060, FVC would maintain an upward trend, except for the east, where FVC would rapidly decline after 2039. FVC in the eastern region experienced a transition from past growth to future decline, suggesting that the focus of future ecosystem management should be on this region.

2.
ACS Appl Mater Interfaces ; 12(24): 27378-27385, 2020 Jun 17.
Article En | MEDLINE | ID: mdl-32441092

The valence change model describes the resistive switching in metal oxide-based devices as due to electroreduction of the oxide and subsequent electromigration of oxygen vacancies. Here, we present cross-sectional X-ray energy-dispersive spectroscopy elemental maps of Ta, O, N, and Ti in electroformed TiN/TaO2.0/TiN structures. O, N, and Ti were exchanged between the anode and the functional oxide in devices formed at high power (∼1 mW), but the exchange was below the detection limit at low power (<0.5 mW). All structures exhibit a similar Ta-enriched and O-depleted filament formed by the elemental segregation in the functional oxide by the temperature gradient. The elemental interchange is interpreted as due to Fick's diffusion caused by high temperatures in the gap of the filament and is not an essential part of electroformation.

3.
ACS Appl Mater Interfaces ; 10(27): 23187-23197, 2018 Jul 11.
Article En | MEDLINE | ID: mdl-29912544

The distribution of tantalum and oxygen ions in electroformed and/or switched TaO x-based resistive switching devices has been assessed by high-angle annular dark-field microscopy, X-ray energy-dispersive spectroscopy, and electron energy-loss spectroscopy. The experiments have been performed in the plan-view geometry on the cross-bar devices producing elemental distribution maps in the direction perpendicular to the electric field. The maps revealed an accumulation of +20% Ta in the inner part of the filament with a 3.5% Ta-depleted ring around it. The diameter of the entire structure was approximately 100 nm. The distribution of oxygen was uniform with changes, if any, below the detection limit of 5%. We interpret the elemental segregation as due to diffusion driven by the temperature gradient, which in turn is induced by the spontaneous current constriction associated with the negative differential resistance-type I- V characteristics of the as-fabricated metal/oxide/metal structures. A finite-element model was used to evaluate the distribution of temperature in the devices and correlated with the elemental maps. In addition, a fine-scale (∼5 nm) intensity contrast was observed within the filament and interpreted as due phase separation of the functional oxide in the two-phase composition region. Understanding the temperature-gradient-induced phenomena is central to the engineering of oxide memory cells.

...