Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Cell Biosci ; 14(1): 62, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750565

BACKGROUND: Gut microbiota and their metabolites play a regulatory role in skeletal muscle growth and development, which be known as gut-muscle axis. 3-phenylpropionic acid (3-PPA), a metabolite produced by colonic microorganisms from phenylalanine in the gut, presents in large quantities in the blood circulation. But few study revealed its function in skeletal muscle development. RESULTS: Here, we demonstrated the beneficial effects of 3-PPA on muscle mass increase and myotubes hypertrophy both in vivo and vitro. Further, we discovered the 3-PPA effectively inhibited protein degradation and promoted protein acetylation in C2C12 and chick embryo primary skeletal muscle myotubes. Mechanistically, we supported that 3-PPA reduced NAD+ synthesis and subsequently suppressed tricarboxylic acid cycle and the mRNA expression of SIRT1/3, thus promoting the acetylation of total protein and Foxo3. Moreover, 3-PPA may inhibit Foxo3 activity by directly binding. CONCLUSIONS: This study firstly revealed the effect of 3-PPA on skeletal muscle growth and development, and newly discovered the interaction between 3-PPA and Foxo3/NAD+ which mechanically promote myotubes hypertrophy. These results expand new understanding for the regulation of gut microbiota metabolites on skeletal muscle growth and development.

2.
EMBO Rep ; 25(2): 524-543, 2024 Feb.
Article En | MEDLINE | ID: mdl-38253688

Metabolites derived from the intestinal microbiota play an important role in maintaining skeletal muscle growth, function, and metabolism. Here, we found that D-malate (DMA) is produced by mouse intestinal microorganisms and its levels increase during aging. Moreover, we observed that dietary supplementation of 2% DMA inhibits metabolism in mice, resulting in reduced muscle mass, strength, and the number of blood vessels, as well as the skeletal muscle fiber type I/IIb ratio. In vitro assays demonstrate that DMA decreases the proliferation of vascular endothelial cells and suppresses the formation of blood vessels. In vivo, we further demonstrated that boosting angiogenesis by muscular VEGFB injection rescues the inhibitory effects of D-malate on muscle mass and fiber area. By transcriptomics analysis, we identified that the mechanism underlying the effects of DMA depends on the elevated intracellular acetyl-CoA content and increased Cyclin A acetylation rather than redox balance. This study reveals a novel mechanism by which gut microbes impair muscle angiogenesis and may provide a therapeutic target for skeletal muscle dysfunction in cancer or aging.


Endothelial Cells , Microbiota , Mice , Animals , Endothelial Cells/metabolism , Acetylation , Cyclin A/metabolism , Angiogenesis , Malates/metabolism , Muscle, Skeletal/metabolism , Aging
3.
FASEB J ; 38(2): e23373, 2024 02.
Article En | MEDLINE | ID: mdl-38217376

Fatigue is a common phenomenon closely related to physical discomfort and numerous diseases, which is severely threatening the life quality and health of people. However, the exact mechanisms underlying fatigue are not fully characterized. Herein, we demonstrate that oxaloacetic acid (OAA), a crucial tricarboxylic acid cycle intermediate, modulates the muscle fatigue. The results showed that serum OAA level was positively correlated with fatigue state of mice. OAA-treated induced muscle fatigue impaired the exercise performance of mice. Mechanistically, OAA increased the c-Jun N-terminal kinase (JNK) phosphorylation and uncoupling protein 2 (UCP2) levels in skeletal muscle, which led to decreased energy substrate and enhanced glycolysis. On the other hand, OAA boosted muscle mitochondrial oxidative phosphorylation uncoupled with energy production. In addition, either UCP2 knockout or JNK inhibition totally reversed the effects of OAA on skeletal muscle. Therein, JNK mediated UCP2 activation with OAA-treated. Our studies reveal a novel role of OAA in skeletal muscle metabolism, which would shed light on the mechanism of muscle fatigue and weakness.


Mitochondria , Oxaloacetic Acid , Humans , Mice , Animals , Oxaloacetic Acid/metabolism , Oxaloacetic Acid/pharmacology , Mitochondria/metabolism , Oxidative Phosphorylation , Citric Acid Cycle , Muscle, Skeletal/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Uncoupling Protein 3/metabolism , Energy Metabolism
4.
Nutrients ; 15(16)2023 Aug 08.
Article En | MEDLINE | ID: mdl-37630692

Depression is often considered one of the prevalent neuropsychiatric symptoms of Alzheimer's disease (AD). ß-amyloid (Aß) metabolism disorders and impaired microglia phagocytosis are potential pathological mechanisms between depression and AD. Folate deficiency (FD) is a risk factor for depression and AD. In this study, we used a chronic unpredictable mild stress (CUMS) rat model and a model of Aß phagocytosis by BV2 cells to explore the potential mechanisms by which FD affects depression and AD. The results revealed that FD exacerbated depressive behavior and activated microglia in CUMS rats, leading to an increase in intracellular Aß and phagocytosis-related receptors for advanced glycation end products (RAGE). Then, in vitro results showed that the expression of the RAGE receptor and M2 phenotype marker (CD206) were upregulated by FD treatment in BV2 cells, leading to an increase in Aß phagocytosis. However, there was no significant difference in the expression of toll-like receptor 4 (TLR4) and clathrin heavy chain (CHC). Furthermore, when using the RAGE-specific inhibitor FPS-ZM1, there was no significant difference in Aß uptake between folate-normal (FN) and FD BV2 cell groups. In conclusion, these findings suggest FD may promote microglia phagocytosis Aß via regulating the expression of RAGE or microglia phenotype under Aß treatment.


Alzheimer Disease , Folic Acid Deficiency , Animals , Rats , Microglia , Amyloid beta-Peptides , Phagocytosis , Folic Acid Deficiency/complications , Receptor for Advanced Glycation End Products , Folic Acid/pharmacology
5.
Front Cell Infect Microbiol ; 13: 1189008, 2023.
Article En | MEDLINE | ID: mdl-37293210

Dysbiosis of the gut microbiota is associated with the development of depression, but the underlying mechanism remains unclear. The aim of this study was to determine the relationship between microbiota and NLRP3 inflammasome induced by chronic unpredictable mild stress (CUMS). Fecal transplantation (FMT) experiment was conducted to elucidate the potential mechanism. Levels of NLRP3 inflammasome, microbiota, inflammatory factors and tight junction proteins were measured. CUMS stimulation significantly increased the levels of NLRP3, Caspase-1 and ASC in brain and colon(p<0.05), decreased the levels of tight junction proteins Occludin and ZO-1 (p<0.05). Interestingly, increased NLRP3 inflammasome and inflammatory cytokines and decreased tight junction proteins were found in antibiotic-treated (Abx) rats received CUMS rat fecal microbiota transplantation. Furthermore, fecal microbiota transplantation altered the microbiota in Abx rats, which partially overlapped with that of the donor rats. Importantly, probiotic administration amended the alteration of microbiota induced by CUMS treatment, then reduced the levels of NLRP3 inflammasome and inflammatory factors. In conclusion, these findings suggested that depression-like behaviors induced by CUMS stimulation were related to altered gut microbiota, broke the intestinal barrier, promoted the expression of NLRP3 inflammasome and elevated inflammation. Therefore, improving the composition of microbiota via probiotic can attenuate inflammation by amending the microbiota and suppressing the activation of NLRP3 inflammasome, which is considered as a novel therapeutic strategy for depression.


Gastrointestinal Microbiome , Inflammasomes , Rats , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain/metabolism , Inflammation , Stress, Psychological
6.
Mol Metab ; 73: 101747, 2023 07.
Article En | MEDLINE | ID: mdl-37279828

OBJECTIVE: Brown adipose tissue (BAT) plays a crucial role in regulating non-shivering thermogenesis under cold exposure. Proline hydroxylases (PHDs) were found to be involved in adipocyte differentiation and lipid deposition. However, the effects of PHDs on regulatory mechanisms of BAT thermogenesis are not fully understood. METHODS: We detected the expression of PHDs in different adipose tissues by using immunoblotting and real-time PCR. Further, immunoblotting, real-time PCR, and immunostaining were performed to determine the correlation between proline hydroxylase 2 (PHD2) and UCP1 expression. Inhibitor of PHDs and PHD2-sgRNA viruses were used to construct the PHD2-deficiency model in vivo and in vitro to investigate the impacts of PHD2 on BAT thermogenesis. Afterward, the interaction between UCP1 and PHD2 and the hydroxylation modification level of UCP1 were verified by Co-IP assays and immunoblotting. Finally, the effect of specific proline hydroxylation on the expression/activity of UCP1 was further confirmed by site-directed mutation of UCP1 and mass spectrometry analysis. RESULTS: PHD2, but not PHD1 and PHD3, was highly enriched in BAT, colocalized, and positively correlated with UCP1. Inhibition or knockdown of PHD2 significantly suppressed BAT thermogenesis under cold exposure and aggravated obesity of mice fed HFD. Mechanistically, mitochondrial PHD2 bound to UCP1 and regulated the hydroxylation level of UCP1, which was enhanced by thermogenic activation and attenuated by PHD2 knockdown. Furthermore, PHD2-dependent hydroxylation of UCP1 promoted the expression and stability of UCP1 protein. Mutation of the specific prolines (Pro-33, 133, and 232) in UCP1 significantly mitigated the PHD2-elevated UCP1 hydroxylation level and reversed the PHD2-increased UCP1 stability. CONCLUSIONS: This study suggested an important role for PHD2 in BAT thermogenesis regulation by enhancing the hydroxylation of UCP1.


Obesity , Prolyl Hydroxylases , Animals , Mice , Adipose Tissue, Brown/metabolism , Hydroxylation , Obesity/metabolism , Proline/metabolism , Prolyl Hydroxylases/metabolism , Thermogenesis/physiology
7.
Front Psychiatry ; 13: 990465, 2022.
Article En | MEDLINE | ID: mdl-36159940

Increasing evidence indicated that probiotics can be effective in improving behaviors similar to depression and anxiety disorders. However, the underlying mechanisms remain unclear, as is the effects of single vs. combined probiotics on depression and anxiety. This study aimed to determine whether combined probiotics could attenuate depressive-like and anxiety-like behavior induced by chronic unpredictable mild stress (CUMS) and its potential mechanisms. Rats underwent CUMS treatment and then administered Lactobacillus rhamnosus HN001 (HN001) or Bifidobacterium animalis subsp. lactis HN019 (HN019), alone or in combination. Levels of neurotransmitters, inflammatory factors, and the gut microbiota were measured. HN001 and (or) HN019 treatment improved depressive-like and anxiety-like behavior in rats, including increased moving distance and exploratory behavior (p < 0.05). In addition, altered gut microbiota structure induced by CUMS was amended by HN001 and/or HN019 (p < 0.05). HN001 and/or HN019 intervention also remarkably normalized levels of 5-HT, DA, NE, HVA, DOPAC, HIAA, TNF-α, IL-6, IL-18 and IL-1ß in CUMS rats (p < 0.05). Furthermore, the effects of combined probiotics on decreasing inflammation and improved gut microbiota (Chao1 index and ACE index, p < 0.05) were superior to the single probiotics. Moreover, spearman analysis showed a certain correlation between the different microbiota, such as Firmicutes, Bacteroidetes, Verrucomicrobias, Proteobacterias and Actinobacterias, and inflammation and neurotransmitters. These findings suggested that CUMS induced depressive and anxiety-like behaviors can be alleviated by the combination of probiotics, which was possibly associated with the alterations in the gut microbiota composition and increased neurotransmitters and decreased inflammatory factors.

8.
Sci Adv ; 8(18): eabn2879, 2022 05 06.
Article En | MEDLINE | ID: mdl-35507647

Previously, we found that α-ketoglutaric acid (AKG) stimulates muscle hypertrophy and fat loss through 2-oxoglutarate receptor 1 (OXGR1). Here, we demonstrated the beneficial effects of AKG on glucose homeostasis in a diet-induced obesity (DIO) mouse model, which are independent of OXGR1. We also showed that AKG effectively decreased blood glucose and hepatic gluconeogenesis in DIO mice. By using transcriptomic and liver-specific serpina1e deletion mouse model, we further demonstrated that liver serpina1e is required for the inhibitory effects of AKG on hepatic gluconeogenesis. Mechanistically, we supported that extracellular AKG binds with a purinergic receptor, P2RX4, to initiate the solute carrier family 25 member 11 (SLC25A11)-dependent nucleus translocation of intracellular AKG and subsequently induces demethylation of lysine 27 on histone 3 (H3K27) in the seprina1e promoter region to decrease hepatic gluconeogenesis. Collectively, these findings reveal an unexpected mechanism for control of hepatic gluconeogenesis using circulating AKG as a signal molecule.


Diabetes Mellitus , Hyperglycemia , Animals , Diabetes Mellitus/metabolism , Gluconeogenesis , Hyperglycemia/drug therapy , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Liver/metabolism , Mice , Mice, Inbred C57BL
9.
ACS Biomater Sci Eng ; 8(4): 1554-1565, 2022 04 11.
Article En | MEDLINE | ID: mdl-35245017

Natural polymer gels with sensitivity to near-infrared (NIR) light have attracted the attention of scientists working on intelligent drug delivery systems. Compared to ultraviolet or visible light, NIR light has the advantages of strong trigger levels, deep penetration through affected tissues, and fewer side effects. Herein, we present a topical photothermal hydrogel for NIR-controlled drug delivery. The proposed DexIEM-GM-Laponite hydrogel was prepared through free radical polymerization of vinyl-functionalized dextran (DexIEM), vinyl-modified graphene oxide (GM), and Laponite; thereafter, the hydrogel was loaded with ciprofloxacin (CIP, an antibacterial drug) as a model drug. With the Laponite content increased, the density of crosslinking in the hydrogel increased, and its mechanical properties improved noticeably. Under NIR irradiation, the DexIEM-GM-Laponite hydrogel exhibited a photothermal property, where the surface temperature increased from 26.8 to 55.5 °C. The simulation of subcutaneous drug delivery experiments ex vivo showed that under the specified pork tissue thickness (2, 4, and 6 mm), the CIP release remained NIR-controllable. Additionally, the results of the antibacterial performance tests indicated the excellent antibacterial effect of the hydrogel, and the blood hemolysis ratio of the hydrogel was less than 5%, signifying good blood compatibility. This work will provide an avenue for the application of NIR light-responsive materials in antimicrobial therapy.


Dextrans , Hydrogels , Anti-Bacterial Agents/pharmacology , Drug Liberation , Hydrogels/pharmacology , Silicates
10.
Food Chem ; 369: 130872, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-34455324

Tender Coconut water is popular for its deliciousness and nutrition. Mature coconut water, usually discarded as waste in the coconut kernel-based food industry due to its unpleasant flavor, was used as a raw material to make vinegar by liquid-state fermentation. The compounds in fresh coconut water with high odor activity values (OAVs) were isovaleric acid and acetic acid, with pungent sour tastes. The compounds with high OAVs in aged coconut water vinegar were phenylethyl acetate, isoamyl acetate and benzaldehyde, with almond, banana or pear-like aromas. Coconut water vinegar was rich in essential amino acids, especially phenylalanine. Through pathway analysis, seventeen key metabolic pathways and three key metabolic substrates (aspartate, glutamate and pyruvate) were found. According to sensory evaluation, the aged vinegar tastes better. Coconut water vinegar is delicious and nutritious, so reprocessing mature coconut water into vinegar is an appropriate way to reuse waste coconut water.


Acetic Acid , Cocos , Acetic Acid/analysis , Fermentation , Metabolomics , Nutritive Value , Taste
11.
J Agric Food Chem ; 69(51): 15636-15648, 2021 Dec 29.
Article En | MEDLINE | ID: mdl-34928153

Conjugated linoleic acid (CLA) has been implicated in regulating muscle fiber. However, which isomer elicits this effect and the underlying mechanisms remain unclear. Here, male C57BL6/J mice and C2C12 cells were treated with two CLA isomers, and the exercise endurance, skeletal muscle fiber type, and involvement of Toll-like receptor 4 (TLR4) signaling were assessed. The results demonstrated that dietary t10, c12, but not c9, t11-CLA isomer enhanced exercise endurance of mice (from 115.88 ± 11.21 to 130.00 ± 15.84 min, P < 0.05) and promoted the formation of oxidative muscle fiber type of gastrocnemius muscle (from 0.15 ± 0.04 to 0.24 ± 0.05, P < 0.05). Consistently, t10, c12-CLA isomer increased the mRNA expression of oxidative muscle fiber type in C2C12 myotubes (from 1.00 ± 0.08 to 2.65 ± 1.77, P < 0.05). In addition, t10, c12-CLA isomer increased TLR4 signaling expression in skeletal muscle and C2C12 myotubes. More importantly, knockdown of TLR4 eliminated the t10, c12-CLA isomer-induced enhancement of exercise endurance in mice and elevation of oxidative muscle fiber type in C2C12 myotubes and gastrocnemius muscle. Together, these findings showed that t10, c12, but not c9, t11-CLA isomer enhances exercise endurance by increasing oxidative skeletal muscle fiber type via TLR4 signaling.


Linoleic Acids, Conjugated , Animals , Linoleic Acids, Conjugated/metabolism , Male , Mice , Muscle Fibers, Skeletal/metabolism , Oxidation-Reduction , Oxidative Stress , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
12.
FASEB J ; 35(4): e21444, 2021 04.
Article En | MEDLINE | ID: mdl-33749901

Skeletal muscle is the largest organ of the body, the development of skeletal muscle is very important for the health of the animal body. Prolyl hydroxylases (PHDs) are the classical regulator of the hypoxia inducible factor (HIF) signal pathway, many researchers found that PHDs are involved in the muscle fiber type transformation, muscle regeneration, and myocyte differentiation. However, whether PHDs can impact the protein turnover of skeletal muscle is poorly understood. In this study, we constructed denervated muscle atrophy mouse model and found PHD3 was highly expressed in the atrophic muscles and there was a significant correlation between the expression level of PHD3 and skeletal muscle weight which was distinct from PHD1 and PHD2. Then, the similar results were getting from the different weight muscles of normal mice. To further verify the relationship between PHD3 and skeletal muscle protein turnover, we established a PHD3 interference model by injecting PHD3 sgRNA virus into tibialis anterior muscle (TA) muscle of MCK-Cre-cas9 mice and transfecting PHD3 shRNA lentivirus into primary satellite cells. It was found that the Knock-out of PHD3 in vivo led to a significant increase in muscle weight and muscle fiber area (P < .05). Besides, the activity of protein synthesis signal pathway increased significantly, while the protein degradation pathway was inhibited evidently (P < .05). In vitro, the results of 5-ethynyl-2'-deoxyuridine (EdU) and tetramethylrhodamine ethyl ester (TMRE) fluorescence detection showed that PHD3 interference could lead to a decrease in cell proliferation and an increase of cell apoptosis. After the differentiation of satellite cells, the production of puromycin in the interference group was higher than that in the control group, and the content of 3-methylhistidine in the interference group was lower than that in the control group (P < .05) which is consistent with the change of protein turnover signal pathway in the cell. Mechanistically, there is an interaction between PHD3, NF-κB, and IKBα which was detected by immunoprecipitation. With the interfering of PHD3, the expression of the inflammatory signal pathway also significantly decreased (P < .05). These results suggest that PHD3 may affect protein turnover in muscle tissue by mediating inflammatory signal pathway. Finally, we knocked out PHD3 in denervated muscle atrophy mice and LPS-induced myotubes atrophy model. Then, we found that the decrease of PHD3 protein level could alleviate the muscle weight and muscle fiber reduction induced by denervation in mice. Meanwhile, the protein level of the inflammatory signal pathway and the content of 3-methylhistidine in denervated atrophic muscle were also significantly reduced (P < .05). In vitro, PHD3 knock-out could alleviate the decrease of myotube diameter induced by LPS, and the expression of protein synthesis pathway was also significantly increased (P < .05). On the contrary, the expression level of protein degradation and inflammatory signal pathway was significantly decreased (P < .05). Through these series of studies, we found that the increased expression of PHD3 in denervated muscle might be an important regulator in inducing muscle atrophy, and this process is likely to be mediated by the inflammatory NF-κB signal pathway.


Denervation , Muscle, Skeletal/innervation , Muscular Atrophy/metabolism , NF-kappa B/metabolism , Procollagen-Proline Dioxygenase/metabolism , Animals , Gene Expression Regulation , Hypertrophy , Inflammation/genetics , Inflammation/metabolism , Methylhistidines , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/pathology , NF-kappa B/genetics , Procollagen-Proline Dioxygenase/genetics , Puromycin , Satellite Cells, Skeletal Muscle/physiology , Signal Transduction
13.
Front Physiol ; 12: 647743, 2021.
Article En | MEDLINE | ID: mdl-33746782

Hypoxanthine (Hx), an intermediate metabolite of the purine metabolism pathway which is dramatically increased in blood and skeletal muscle during muscle contraction and metabolism, is characterized as a marker of exercise exhaustion. However, the physiological effects of Hx on skeletal muscle remain unknown. Herein, we demonstrate that chronic treatment with Hx through dietary supplementation resulted in skeletal muscle fatigue and impaired the exercise performance of mice without affecting their growth and skeletal muscle development. Hx increased the uncoupling protein 2 (UCP2) expression in the skeletal muscle, which led to decreased energy substrate storage and enhanced glycolysis. These effects could also be verified in acute treatment with Hx through intraperitoneal injection. In addition, muscular specifically knockout of UCP2 through intra-muscle tissue injection of adenovirus-associated virus reversed the effects of Hx. In conclusion, we identified a novel role of Hx in the skeletal muscular fatigue mediated by UCP2-dependent mitochondrial uncoupling. This finding may shed light on the pathological mechanism of clinical muscle dysfunctions due to abnormal metabolism, such as muscle fatigue and weakness.

14.
Bioresour Technol ; 323: 124634, 2021 Mar.
Article En | MEDLINE | ID: mdl-33422792

The efficient depolymerization and hydrodeoxygenation of enzymatic hydrolysis lignin are achieved in cyclohexane solvents over a gamma-alumina supported nickel molybdenum alloy catalyst in a single step. Under initial 3 MPa hydrogen at 320 °C, the highest overall cycloalkane yield of 104.4 mg/g enzymatic hydrolysis lignin with 44.4 wt% selectivity of ethyl-cyclohexane was obtained. The reaction atmosphere and temperature have significant effects on enzymatic hydrolysis lignin conversion, product type and distribution. The conversion of enzymatic hydrolysis lignin was also investigated over different nickel and molybdenum-based catalysts, and the gamma-alumina supported nickel molybdenum alloy catalyst exhibited the highest activity among those catalysts. To reveal the reaction pathways of alkylphenol hydrodeoxygenation, 4-ethylphenol was tested as a model compound. Complete conversion of 4-ethylphenol into cycloalkanes was achieved. A two-step mechanism of 4-ethylphenol dihydroxylation - hydrogenation is proposed, in which the benzene ring saturation is deemed as the rate-determining step.


Cycloparaffins , Lignin , Alloys , Aluminum Oxide , Catalysis , Hydrolysis , Molybdenum , Nickel
15.
Am J Cancer Res ; 9(2): 285-299, 2019.
Article En | MEDLINE | ID: mdl-30906629

For decades, E2F1 has been recognized as a retinoblastoma protein (RB) binding transcription factor that regulates the cell cycle. E2F1 binds preferentially to RB and accelerates the cell cycle in most cancer cells. However, it is thought that E2F1 modulates cell proliferation in other ways as well. Herein, it has been discovered that in pathological tissues derived from hepatocellular carcinoma (HCC) patients, E2F1 correlates positively with IQGAP3 and that both of these factors are highly expressed (N = 164, R = 0.6716). In addition, a high level of E2F1 or IQGAP3 predicted poor survival in HCC patients. Further study determined that E2F1 transactivates IQGAP3, the GTPase binding protein in MHCC-97H cells. Co-immunoprecipitation analysis indicated that IQGAP3 interacts with PKCδ and competitively inhibits the interaction between PKCδ and PKCα, resulting in phosphorylation of PKCα activation and promotion of cell proliferation. This study reveals that highly expressed E2F1 not only transactivates cell-cycle-related factors but also promotes HCC proliferation by activating the phosphorylation of PKCα.

16.
Inorg Chem ; 57(15): 8705-8708, 2018 Aug 06.
Article En | MEDLINE | ID: mdl-30028128

Haggite-structured V4O6(OH)4 is prepared via a one-step reduction of V2O5 in a mixture of guaiacol and methanol. Guaiacol delays the overreduction of Haggite to V2O3. The time window for the stable existence of the Haggite phase is enlarged at low temperature.

17.
Acta Pharmacol Sin ; 39(6): 1012-1021, 2018 Jun.
Article En | MEDLINE | ID: mdl-29265109

Humanin (HN) is a 24-residue peptide identified from the brain of a patient with Alzheimer's disease (AD). HN has been found to protect against neuronal insult caused by Aß peptides or transfection of familial AD mutant genes. In order to elucidate the molecular mechanisms of HN neuroprotection, we explored the effects of HN on the association of Bax or Bid with lipid bilayers and their oligomerization in the membrane. By using single-molecule fluorescence and Förster resonance energy transfer techniques, we showed that Bax was mainly present as monomers, dimers and tetramers in lipid bilayers, while truncated Bid (tBid) enhanced the membrane association and tetramerization of Bax. HN (100 nmol/L) inhibited the self-association and tBid-activated association of Bax with the bilayers, and significantly decreased the proportion of Bax in tetramers. Furthermore, HN inhibited Bid translocation to lipid bilayers. HN could bind with Bax and Bid either in solution or in the membrane. However, HN could not pull the proteins out of the membrane. Based on these results, we propose that HN binds to Bax and cBid in solution and inhibits their translocation to the membrane. Meanwhile, HN interacts with the membrane-bound Bax and tBid, preventing the recruitment of cytosolic Bax and its oligomerization in the membrane. In this way, HN inhibits Bax pore formation in mitochondrial outer membrane and suppresses cytochrome c release and mitochondria-dependent apoptosis.


BH3 Interacting Domain Death Agonist Protein/metabolism , Intracellular Signaling Peptides and Proteins/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Membranes/drug effects , Neuroprotective Agents/pharmacology , bcl-2-Associated X Protein/metabolism , Animals , Apoptosis/drug effects , BH3 Interacting Domain Death Agonist Protein/genetics , Cytochromes c/metabolism , Fluorescence Resonance Energy Transfer , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lipid Bilayers , Mitochondrial Membranes/metabolism , Neuroprotective Agents/metabolism , Protein Binding , Protein Multimerization , Protein Transport , Single Molecule Imaging , bcl-2-Associated X Protein/genetics
18.
Bioresour Technol ; 209: 313-7, 2016 Jun.
Article En | MEDLINE | ID: mdl-26990399

Microalgae have been considered as the feedstock for the third generation biofuels production, given its high lipid content and fast productivity. Herein, a catalytic approach for microalgae liquefaction to biocrude is examined in a temperature range of 250-300°C in methanol and ethanol over zeolites. Higher biocrude yield was achieved in ethanol and at lower temperatures, while better quality biocrude with higher light biocrude ratio and lower average molecular weight (Mw) was favored in methanol and at higher temperatures. Application of zeolites improves the biocrude quality significantly. Among the catalysts, HY shows the strongest acidity and performs the best to produce high quality biocrude. Solid residues have been extensively explored with thermal gravity analysis and elemental analysis. It is reported for the first time that up to 99wt.% of sulfur is deposited in the solid residue at 250°C for both solvents.


Alcohols/pharmacology , Biofuels/analysis , Chlorella/metabolism , Zeolites/pharmacology , Ammonium Compounds/analysis , Catalysis , Chlorella/drug effects , Ethanol/pharmacology , Molecular Weight , Pressure , Temperature , Thermogravimetry
19.
Psychol Rep ; 116(1): 311-21, 2015 Feb.
Article En | MEDLINE | ID: mdl-25650641

Although gender differences in self-efficacy and subjective well-being have been reported in previous studies, little published research has investigated the interrelationships between these variables in adolescents. 648 Chinese adolescents were administered a series of questionnaires to test the hypothesis that self-efficacy mediates the relationship between gender and subjective well-being. The results indicated that adolescent girls had lower general self-efficacy than adolescent boys, which explained girls' lower subjective well-being. The theoretical and practical implications may help parents and educators to strengthen adolescents' happiness.


Adolescent Development , Personal Satisfaction , Self Efficacy , Adolescent , China/ethnology , Female , Humans , Male , Sex Factors
20.
PLoS One ; 10(2): e0115339, 2015.
Article En | MEDLINE | ID: mdl-25706717

SIRT1 exerts protective effects against endothelial cells dysfunction, inflammation and atherosclerosis, indicating an important role on myocardial infarction (MI) pathogenesis. Nonetheless, the effects of SIRT1 variants on MI risk remain poorly understood. Here we aimed to investigate the influence of SIRT1 polymorphisms on individual susceptibility to MI. Genotyping of three tagSNPs (rs7069102, rs3818292 and rs4746720) in SIRT1 gene was performed in a Chinese Han population, consisting of 287 MI cases and 654 control subjects. In a logistic regression analysis, we found that G allele of rs7069102 had increased MI risk with odds ratio (OR) of 1.57 [95% confidence interval (CI) = 1.15-2.16, Bonferroni corrected P (Pc) = 0.015] after adjustment for conventional risk factors compared to C allele. Similarly, the combined CG/GG genotypes was associated with the increased MI risk (OR = 1.64, 95% CI = 1.14-2.35, Pc = 0.021) compared to the CC genotype. Further stratified analysis revealed a more significant association with MI risk among younger subjects (≤ 55 years old). Consistent with these results, the haplotype rs7069102G-rs3818292A-rs4746720T containing the rs7069102 G allele was also associated with the increased MI risk (OR = 1.41, 95% CI = 1.09-1.84, Pc = 0.040). However, we did not detect any association of rs3818292 and rs4746720 with MI risk. Our study provides the first evidence that the tagSNP rs7069102 and haplotype rs7069102G-rs3818292A-rs4746720T in SIRT1 gene confer susceptibility to MI in the Chinese Han population.


Genetic Predisposition to Disease , Myocardial Infarction/genetics , Polymorphism, Single Nucleotide , Sirtuin 1/genetics , Aged , Alleles , Asian People/genetics , China , Female , Gene Frequency , Genotype , Haplotypes , Humans , Male , Middle Aged
...