Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807320

RESUMEN

Phytotherapy offers obvious advantages in the intervention of Coronary Artery Disease (CAD), but it is difficult to clarify the working mechanisms of the medicinal materials it uses. DGS is a natural vasoprotective combination that was screened out in our previous research, yet its potential components and mechanisms are unknown. Therefore, in this study, HPLC-MS and network pharmacology were employed to identify the active components and key signaling pathways of DGS. Transgenic zebrafish and HUVECs cell assays were used to evaluate the effectiveness of DGS. A total of 37 potentially active compounds were identified that interacted with 112 potential targets of CAD. Furthermore, PI3K-Akt, MAPK, relaxin, VEGF, and other signal pathways were determined to be the most promising DGS-mediated pathways. NO kit, ELISA, and Western blot results showed that DGS significantly promoted NO and VEGFA secretion via the upregulation of VEGFR2 expression and the phosphorylation of Akt, Erk1/2, and eNOS to cause angiogenesis and vasodilation. The result of dynamics molecular docking indicated that Salvianolic acid C may be a key active component of DGS in the treatment of CAD. In conclusion, this study has shed light on the network molecular mechanism of DGS for the intervention of CAD using a network pharmacology-driven strategy for the first time to aid in the intervention of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Medicamentos Herbarios Chinos , Animales , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas/metabolismo , Fitoterapia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pez Cebra/metabolismo
2.
Int J Mol Sci ; 20(15)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390813

RESUMEN

Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductases (CPRs) function as redox partners of cytochrome P450 monooxygenases (P450s). CPRs and P450s in insects have been found to participate in insecticide resistance. However, the CPR of the moth Spodoptera litura has not been well characterized yet. Based on previously obtained transcriptome information, a full-length CPR cDNA of S. litura (SlCPR) was PCR-cloned. The deduced amino acid sequence contains domains and residues predicted to be essential for CPR function. Phylogenetic analysis with insect CPR amino acid sequences showed that SlCPR is closely related to CPRs of Lepidoptera. Quantitative reverse transcriptase PCR (RT-qPCR) was used to determine expression levels of SlCPR in different developmental stages and tissues of S. litura. SlCPR expression was strongest at the sixth-instar larvae stage and fifth-instar larvae showed highest expression in the midgut. Expression of SlCPR in the midgut and fat body was strongly upregulated when fifth-instar larvae were exposed to phoxim at LC15 (4 µg/mL) and LC50 (20 µg/mL) doses. RNA interference (RNAi) mediated silencing of SlCPR increased larval mortality by 34.6% (LC15 dose) and 53.5% (LC50 dose). Our results provide key information on the SlCPR gene and indicate that SlCPR expression levels in S. litura larvae influence their susceptibility to phoxim and possibly other insecticides.


Asunto(s)
Silenciador del Gen , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , NADPH-Ferrihemoproteína Reductasa/genética , Compuestos Organotiofosforados/farmacología , Spodoptera/efectos de los fármacos , Spodoptera/genética , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Larva , NADPH-Ferrihemoproteína Reductasa/metabolismo , Filogenia , Interferencia de ARN , Spodoptera/clasificación , Spodoptera/metabolismo
3.
Viruses ; 11(4)2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970658

RESUMEN

As an invasive weed, Mikaniamicrantha Kunth has caused serious damage to natural forest ecosystems in South China in recent years. Mikania micrantha wilt virus (MMWV), an isolate of the Gentian mosaic virus (GeMV), is transmitted by Myzuspersicae (Sulzer) in a non-persistent manner and can effectively inhibit the growth of M. micrantha. To explore the MMWV-M. micrantha-M. persicae interaction and its impact on the invasion of M. micrantha, volatile compounds (VOCs) emitted from healthy, mock-inoculated, and MMWV-infected plants were collected, and effects on host preference of the apterous and alate aphids were assessed with Y-shaped olfactometers. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that MMWV infection changed the VOC profiles, rendering plants more attractive to aphids. Clip-cages were used to document the population growth rate of M.persicae fed on healthy, mock-inoculated, or MMWV-infected plants. Compared to those reared on healthy plants, the population growth of M. persicae drastically decreased on the MMWV-infected plants. Plant host choice tests based on visual and contact cues were also conducted using alate M.persicae. Interestingly, the initial attractiveness of MMWV-infected plants diminished, and more alate M. persicae moved to healthy plants. Taken together, MMWV appeared to be able to manipulate its plant host to first attract insect vectors to infected plants but then repel viruliferous vectors to promote its own dispersal. Its potential application for invasive weed management is discussed.


Asunto(s)
Áfidos/fisiología , Fabavirus/crecimiento & desarrollo , Conducta Alimentaria/efectos de los fármacos , Interacciones Microbiota-Huesped , Especificidad del Huésped/efectos de los fármacos , Mikania/virología , Feromonas/metabolismo , Animales , Áfidos/efectos de los fármacos , China , Insectos Vectores/efectos de los fármacos , Insectos Vectores/fisiología , Enfermedades de las Plantas/virología , Compuestos Orgánicos Volátiles/metabolismo
4.
Insect Sci ; 26(4): 711-720, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30239122

RESUMEN

Herbicides and insecticides are widely used in modern agriculture. It has been reported in various studies that application of insecticides can increase tolerance of herbivorous insects to insecticides. However, limited information exists on susceptibility to insecticides when insects are exposed to herbicides. This study was conducted to investigate the potential impact of the herbicides trifluralin and 2-methyl-4-chlorophenoxyacetic acid sodium salt (MCPA-Na) on the susceptibility of the nocturnal moth Spodoptera litura to the insecticides λ-cyhalothrin, phoxim and bifenthrin. We found that larvae exposed to trifluralin or MCPA-Na became significantly less susceptible to both insecticides than non-exposed control larvae. Herbicide-treated larvae did not show altered growth under the used test conditions. However, heads of herbicide-treated larvae showed increased expression of the acetylcholinesterase genes SlAce1 and SlAce2. Moreover, the fat body and midgut of herbicide-treated larvae displayed elevated expression of detoxification genes (the carboxylesterase gene SlCarE; the glutathione S-transferase genes SlGSTe2 and SlGSTe3; the cytochrome P450 monooxygenase genes CYP6B48, CYP9A40 and CYP321B1). The CYP6B48 gene exhibited highest inducibility. In conclusion, the data of this study suggest that exposure of S. litura larvae to herbicides may stimulate detoxification mechanisms that compromise the efficacy of insecticides.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Insecticidas , Spodoptera/efectos de los fármacos , Trifluralina , Acetilcolinesterasa/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Expresión Génica/efectos de los fármacos , Genes de Insecto , Glutatión Transferasa/metabolismo , Inactivación Metabólica , Larva/efectos de los fármacos , Larva/enzimología , Spodoptera/enzimología , Pruebas de Toxicidad
5.
Int J Mol Sci ; 19(3)2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29510578

RESUMEN

In insects, cytochrome P450 monooxygenases (P450s or CYPs) are known to be involved in the detoxification and metabolism of insecticides, leading to increased resistance in insect populations. Spodoptera exigua is a serious polyphagous insect pest worldwide and has developed resistance to various insecticides. In this study, a novel CYP3 clan P450 gene CYP9A105 was identified and characterized from S. exigua. The cDNAs of CYP9A105 encoded 530 amino acid proteins, respectively. Quantitative real-time PCR analyses showed that CYP9A105 was expressed at all developmental stages, with maximal expression observed in fifth instar stage larvae, and in dissected fifth instar larvae the highest transcript levels were found in midguts and fat bodies. The expression of CYP9A105 in midguts was upregulated by treatments with the insecticides α-cypermethrin, deltamethrin and fenvalerate at both LC15 concentrations (0.10, 0.20 and 5.0 mg/L, respectively) and LC50 concentrations (0.25, 0.40 and 10.00 mg/L, respectively). RNA interference (RNAi) mediated silencing of CYP9A105 led to increased mortalities of insecticide-treated 4th instar S. exigua larvae. Our results suggest that CYP9A105 might play an important role in α-cypermethrin, deltamethrin and fenvalerate detoxification in S. exigua.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Insecticidas/farmacocinética , Piretrinas/farmacocinética , Spodoptera/genética , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Inactivación Metabólica , Proteínas de Insectos/metabolismo , Spodoptera/metabolismo
6.
Huan Jing Ke Xue ; 33(7): 2191-6, 2012 Jul.
Artículo en Chino | MEDLINE | ID: mdl-23002590

RESUMEN

To characterize the pollution characteristics of microbial aerosols emitted from municipal sewage treatment plants, microbial aerosols were sampled with an Andersen 6-stage impactor at different treatment units of a Xi'an sewage treatment plant between June 2011 and July 2011. The plate-culture and colony-counting methods were employed to determine the concentrations, particle size distributions and median diameters of the airborne bacteria, fungi and actinomycetes. The results showed that the highest concentrations of bacteria (7 866 CFU x m(-3) +/- 960 CFU x m(-3)) and actinomycetes (2 139 CFU x m(-3) +/- 227 CFU x m(-3)) were found in the sludge-dewatering house while the highest fungi concentration (2156 CFU x m(-3) +/- 119 CFU x m(-3)) in the oxidation ditch. The airborne bacteria, fungi and actinomycetes all showed a skewed distribution in particle size. The peaks of bacteria and fungi were in the size range of 2.1-3.3 microm, whereas the peak of airborne actinomycetes was between 1. 1-2.1 microm in size. In general, the order of the median diameters of different microbial aerosols generated from the sewage treatment plant was airborne bacteria > airborne fungi > airborne actinomycetes. In addition, the spatial variation characteristics of microbial aerosols showed that the larger the particle size of the microorganism, the faster the reducing rate of the aerosol concentration. The variations in the reducing rate of concentration with particle sizes can be ordered as airborne bacteria > airborne fungi > airborne actinomycetes.


Asunto(s)
Aerosoles/análisis , Contaminación del Aire/análisis , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Actinobacteria/aislamiento & purificación , Bacterias/aislamiento & purificación , China , Ciudades , Recuento de Colonia Microbiana , Hongos/aislamiento & purificación , Tamaño de la Partícula , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...