Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 343, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907279

RESUMEN

Mitochondria are central to endothelial cell activation and angiogenesis, with the RNA polymerase mitochondrial (POLRMT) serving as a key protein in regulating mitochondrial transcription and oxidative phosphorylation. In our study, we examined the impact of POLRMT on angiogenesis and found that its silencing or knockout (KO) in human umbilical vein endothelial cells (HUVECs) and other endothelial cells resulted in robust anti-angiogenic effects, impeding cell proliferation, migration, and capillary tube formation. Depletion of POLRMT led to impaired mitochondrial function, characterized by mitochondrial depolarization, oxidative stress, lipid oxidation, DNA damage, and reduced ATP production, along with significant apoptosis activation. Conversely, overexpressing POLRMT promoted angiogenic activity in the endothelial cells. In vivo experiments demonstrated that endothelial knockdown of POLRMT, by intravitreous injection of endothelial specific POLRMT shRNA adeno-associated virus, inhibited retinal angiogenesis. In addition, inhibiting POLRMT with a first-in-class inhibitor IMT1 exerted significant anti-angiogenic impact in vitro and in vivo. Significantly elevated expression of POLRMT was observed in the retinal tissues of streptozotocin-induced diabetic retinopathy (DR) mice. POLRMT endothelial knockdown inhibited pathological retinal angiogenesis and mitigated retinal ganglion cell (RGC) degeneration in DR mice. At last, POLRMT expression exhibited a substantial increase in the retinal proliferative membrane tissues of human DR patients. These findings collectively establish the indispensable role of POLRMT in angiogenesis, both in vitro and in vivo.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Células Endoteliales de la Vena Umbilical Humana , Mitocondrias , Humanos , Animales , Ratones , Mitocondrias/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Ratones Endogámicos C57BL , Proliferación Celular , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Masculino , Neovascularización Fisiológica/genética , Movimiento Celular , Apoptosis , Angiogénesis
2.
Cell Death Dis ; 15(4): 253, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594244

RESUMEN

Mitochondria are important for the activation of endothelial cells and the process of angiogenesis. NDUFS8 (NADH:ubiquinone oxidoreductase core subunit S8) is a protein that plays a critical role in the function of mitochondrial Complex I. We aimed to investigate the potential involvement of NDUFS8 in angiogenesis. In human umbilical vein endothelial cells (HUVECs) and other endothelial cell types, we employed viral shRNA to silence NDUFS8 or employed the CRISPR/Cas9 method to knockout (KO) it, resulting in impaired mitochondrial functions in the endothelial cells, causing reduction in mitochondrial oxygen consumption and Complex I activity, decreased ATP production, mitochondrial depolarization, increased oxidative stress and reactive oxygen species (ROS) production, and enhanced lipid oxidation. Significantly, NDUFS8 silencing or KO hindered cell proliferation, migration, and capillary tube formation in cultured endothelial cells. In addition, there was a moderate increase in apoptosis within NDUFS8-depleted endothelial cells. Conversely, ectopic overexpression of NDUFS8 demonstrated a pro-angiogenic impact, enhancing cell proliferation, migration, and capillary tube formation in HUVECs and other endothelial cells. NDUFS8 is pivotal for Akt-mTOR cascade activation in endothelial cells. Depleting NDUFS8 inhibited Akt-mTOR activation, reversible with exogenous ATP in HUVECs. Conversely, NDUFS8 overexpression boosted Akt-mTOR activation. Furthermore, the inhibitory effects of NDUFS8 knockdown on cell proliferation, migration, and capillary tube formation were rescued by Akt re-activation via a constitutively-active Akt1. In vivo experiments using an endothelial-specific NDUFS8 shRNA adeno-associated virus (AAV), administered via intravitreous injection, revealed that endothelial knockdown of NDUFS8 inhibited retinal angiogenesis. ATP reduction, oxidative stress, and enhanced lipid oxidation were detected in mouse retinal tissues with endothelial knockdown of NDUFS8. Lastly, we observed an increase in NDUFS8 expression in retinal proliferative membrane tissues obtained from human patients with proliferative diabetic retinopathy. Our findings underscore the essential role of the mitochondrial protein NDUFS8 in regulating endothelial cell activation and angiogenesis.


Asunto(s)
Angiogénesis , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , ARN Interferente Pequeño/farmacología , Lípidos/farmacología , Adenosina Trifosfato/farmacología , Proliferación Celular/genética , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo
3.
Nat Commun ; 14(1): 8393, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110369

RESUMEN

Ferroptosis is an iron-dependent programmed cell death associated with severe kidney diseases, linked to decreased glutathione peroxidase 4 (GPX4). However, the spatial distribution of renal GPX4-mediated ferroptosis and the molecular events causing GPX4 reduction during ischemia-reperfusion (I/R) remain largely unknown. Using spatial transcriptomics, we identify that GPX4 is situated at the interface of the inner cortex and outer medulla, a hyperactive ferroptosis site post-I/R injury. We further discover OTU deubiquitinase 5 (OTUD5) as a GPX4-binding protein that confers ferroptosis resistance by stabilizing GPX4. During I/R, ferroptosis is induced by mTORC1-mediated autophagy, causing OTUD5 degradation and subsequent GPX4 decay. Functionally, OTUD5 deletion intensifies renal tubular cell ferroptosis and exacerbates acute kidney injury, while AAV-mediated OTUD5 delivery mitigates ferroptosis and promotes renal function recovery from I/R injury. Overall, this study highlights a new autophagy-dependent ferroptosis module: hypoxia/ischemia-induced OTUD5 autophagy triggers GPX4 degradation, offering a potential therapeutic avenue for I/R-related kidney diseases.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Daño por Reperfusión , Humanos , Riñón , Autofagia , Isquemia
4.
Int Immunopharmacol ; 122: 110617, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37478666

RESUMEN

This study aims to discern the possible molecular mechanism of the effect of ubiquitin-specific peptidase 18 (USP18) on the resistance to BRAF inhibitor vemurafenib in BRAF V600E mutant melanoma by regulating cyclic GMP-AMP synthase (cGAS). The cancer tissues of BRAF V600E mutant melanoma patients before and after vemurafenib treatment were collected, in which the protein expression of USP18 and cGAS was determined. A BRAF V600E mutant human melanoma cell line (A2058R) resistant to vemurafenib was constructed with its viability, apoptosis, and autophagy detected following overexpression and depletion assays of USP18 and cGAS. Xenografted tumors were transplanted into nude mice for in vivo validation. Bioinformatics analysis showed that the expression of cGAS was positively correlated with USP18 in melanoma, and USP18 was highly expressed in melanoma. The expression of cGAS and USP18 was up-regulated in cancer tissues of vemurafenib-resistant patients with BRAF V600E mutant melanoma. Knockdown of cGAS inhibited the resistance to vemurafenib in A2058R cells and the protective autophagy induced by vemurafenib in vitro. USP18 could deubiquitinate cGAS to promote its protein stability. In vivo experimentations confirmed that USP18 promoted vemurafenib-induced protective autophagy by stabilizing cGAS protein, which promoted resistance to vemurafenib in BRAF V600E mutant melanoma cells. Collectively, USP18 stabilizes cGAS protein expression through deubiquitination and induces autophagy of melanoma cells, thereby promoting the resistance to vemurafenib in BRAF V600E mutant melanoma.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Animales , Ratones , Humanos , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Ratones Desnudos , Indoles/farmacología , Indoles/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Resistencia a Antineoplásicos/genética , Mutación , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Autofagia/genética , Nucleotidiltransferasas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/farmacología
5.
Cell Death Dis ; 14(5): 307, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147302

RESUMEN

The mitochondrial integrity and function in endothelial cells are essential for angiogenesis. TIMM44 (translocase of inner mitochondrial membrane 44) is essential for integrity and function of mitochondria. Here we explored the potential function and the possible mechanisms of TIMM44 in angiogenesis. In HUVECs, human retinal microvascular endothelial cells and hCMEC/D3 brain endothelial cells, silence of TIMM44 by targeted shRNA largely inhibited cell proliferation, migration and in vitro capillary tube formation. TIMM44 silencing disrupted mitochondrial functions in endothelial cells, causing mitochondrial protein input arrest, ATP reduction, ROS production, and mitochondrial depolarization, and leading to apoptosis activation. TIMM44 knockout, by Cas9-sgRNA strategy, also disrupted mitochondrial functions and inhibited endothelial cell proliferation, migration and in vitro capillary tube formation. Moreover, treatment with MB-10 ("MitoBloCK-10"), a TIMM44 blocker, similarly induced mitochondrial dysfunction and suppressed angiogenic activity in endothelial cells. Contrarily, ectopic overexpression of TIMM44 increased ATP contents and augmented endothelial cell proliferation, migration and in vitro capillary tube formation. In adult mouse retinas, endothelial knockdown of TIMM44, by intravitreous injection of endothelial specific TIMM44 shRNA adenovirus, inhibited retinal angiogenesis, causing vascular leakage, acellular capillary growth, and retinal ganglion cells degeneration. Significant oxidative stress was detected in TIMM44-silenced retinal tissues. Moreover, intravitreous injection of MB-10 similarly induced oxidative injury and inhibited retinal angiogenesis in vivo. Together, the mitochondrial protein TIMM44 is important for angiogenesis in vitro and in vivo, representing as a novel and promising therapeutic target of diseases with abnormal angiogenesis.


Asunto(s)
Células Endoteliales , Proteínas Mitocondriales , Animales , Ratones , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/metabolismo , Proliferación Celular , Movimiento Celular , ARN Interferente Pequeño/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales
6.
Eur J Med Chem ; 244: 114874, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36332551

RESUMEN

Transforming acidic coiled coil containing protein 3 (TACC3) is emerging as an attractive anticancer target in recent years, however, few TACC3 small-molecular inhibitors have been reported up to now. In this study, fifteen compounds were designed and synthesized based on the lead compound KHS101 to find more potent TACC3 inhibitors. Among them, the most potent compound 7g exhibited about 10-folds more potent antiproliferative activities than KHS101 in various cancer cell lines. Two different protein-drug binding assays including DARTS, and CETSA revealed TACC3 as a biologically relevant target of compound 7g. In addition, compound 7g induced cell cycle arrest at the G2/M phase and induced cell apoptosis. Furthermore, compound 7g depolarized the MMP and induced ROS generation in a dose-dependent manner in U87 cells. More importantly, 7g reduced tumor weight by 72.7% in U87 xenograft model at a dose of 20 mg/kg/day without obvious toxicity. Altogether, compound 7g deserved further investigations as a novel, safe and efficacious TACC3 inhibitor for the treatment of GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Proteínas Asociadas a Microtúbulos , Tiazoles/farmacología , Proteínas de Ciclo Celular
7.
Pathol Oncol Res ; 27: 594299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257541

RESUMEN

Glioblastoma is one of the most aggressive primary brain tumors with few treatment strategies. ß-Elemene is a sesquiterpene known to have broad spectrum antitumor activity against various cancers. However, the signaling pathways involved in ß-elemene induced apoptosis of glioblastoma cells remains poorly understood. In this study, we reported that ß-elemene exhibited antiproliferative activity on U87 and SHG-44 cells, and induced cell death through induction of apoptosis. Incubation of these cells with ß-elemene led to the activation of caspase-3 and generation of reactive oxygen species (ROS). Western blot assay showed that ß-elemene suppressed phosphorylation of STAT3, and subsequently down-regulated the activation of p-JAK2 and p-Src. Moreover, pre-incubation of cells with ROS inhibitor N-acetyl-L-cysteine (NAC) significantly reversed ß-elemene-mediated apoptosis effect and down-regulation of JAK2/Src-STAT3 signaling pathway. Overall, our findings implied that generation of ROS and suppression of STAT3 signaling pathway is critical for the apoptotic activity of ß-elemene in glioblastoma cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Sesquiterpenos/farmacología , Transducción de Señal/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glioblastoma/patología , Humanos , Janus Quinasa 2/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo
8.
Eur J Med Chem ; 221: 113528, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34020339

RESUMEN

Naturally occurring polyphenol curcumin (4) or demethoxycurcumin (5) and their synthetic derivatives display promising anticancer activities. However, their further development is limited by low bioavailability and poor selectivity. Thus, a mitochondria-targeted compound 14 (DMC-TPP) was prepared in the present study by conjugating a triphenylphosphine moiety to the phenolic hydroxyl group of demethoxycurcumin to enhance its bioavailability and treatment efficacy. The in vitro biological experiments of DMC-TPP showed that it not only displayed higher cytotoxicity as compared with its parent compound 5, but also exhibited superior mitochondria accumulation ability. Glioma cells were more sensitive to DMC-TPP, which inhibited the proliferation of U251 cells with an IC50 of 0.42 µM. The mechanism studies showed that DMC-TPP triggers mitochondria-dependent apoptosis, caused by caspase activation, production of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP). In addition, DMC-TPP efficiently inhibited cellular thioredoxin reductase, which contributed to its cytotoxicity. Significantly, DMC-TPP delayed tumor progression in a mouse xenograft model of human glioma cancer. Taken together, the potent in vitro and in vivo antitumor activity of DMC-TPP warrant further comprehensive evaluation as a novel anti-glioma agent.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Curcumina/farmacología , Glioma/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Curcumina/síntesis química , Curcumina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glioma/metabolismo , Glioma/patología , Humanos , Mitocondrias/metabolismo , Estructura Molecular , Ratas , Relación Estructura-Actividad , Células Tumorales Cultivadas
9.
Biosci Rep ; 39(7)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31213573

RESUMEN

Hematopoietic stem cells (HSCs) aging is associated with hematopoietic dysfunction and diseases. Our previous study showed that lead exposure induced a functional decline in HSCs. Allicin, a chemical extracted from the garlic (Allium sativum L.), has been reported to have antioxidative and anti-inflammatory effects. However, the biological activities of allicin on lead-induced toxicity, especially in the hematopoietic system, remain unclear. Here, we found that lead exposure elicited aging phenotypes in HSCs, including perturbed cell quiescence, disabled self-renewal function and colony-forming ability, and myeloid-biased differentiation, all of which contributed to significant hematopoietic disorders in mice. Intragastric administration of allicin substantially ameliorated lead-induced HSCs aging phenotypes in vivo Lead exposure induced a peroxide condition in HSCs leading to DNA damage, which reduced expression of the glycolytic enzyme pyruvate kinase M2 isoform (PKM2), a phenotype which was significantly ameliorated by allicin treatment. These findings suggested that allicin alleviated lead-induced HSCs aging by up-regulating PKM2 expression; thus, it could be a natural herb for preventing lead toxicity.


Asunto(s)
Envejecimiento/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Piruvato Quinasa/genética , Ácidos Sulfínicos/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Antioxidantes/farmacología , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Disulfuros , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Isoformas de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA