Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-37890042

RESUMEN

The LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode material has been of significant consideration owing to its high energy density for Li-ion batteries. However, the poor cycling stability in a carbonate electrolyte limits its further development. In this work, we report the excellent electrochemical performance of the NMC811 cathode using a rational electrolyte based on organic ionic plastic crystal N-ethyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide C2mpyr[FSI], with the addition of (1:1 mol) LiFSI salt. This plastic crystal electrolyte (PC) is a thick viscous liquid with an ionic conductivity of 2.3 × 10-3 S cm-1 and a high Li+ transference number of 0.4 at ambient temperature. The NMC811@PC cathode delivers a discharge capacity of 188 mA h g-1 at a rate of 0.2 C with a capacity retention of 94.5% after 200 cycles, much higher than that of using a carbonate electrolyte (54.3%). Moreover, the NMC811@PC cathode also exhibits a superior high-rate capability with a discharge capacity of 111.0 mA h g-1 at the 10 C rate. The significantly improved cycle performance of the NMC811@PC cathode can be attributed to the high Li+ conductivity of the PC electrolyte, the stable Li+ conductive CEI film, and the maintaining of particle integrity during long-term cycling. The admirable electrochemical performance of the NMC811|C2mpyr[FSI]:[LiFSI] system exhibits a promising application of the plastic crystal electrolyte for high voltage layered oxide cathode materials in advanced lithium-ion batteries.

2.
Small ; 19(17): e2206987, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36725320

RESUMEN

Na4 MnV(PO4 )3 /C (NMVP) has been considered an attractive cathode for sodium-ion batteries with higher working voltage and lower cost than Na3 V2 (PO4 )3 /C. However, the poor intrinsic electronic conductivity and Jahn-Teller distortion caused by Mn3+ inhibit its practical application. In this work, the remarkable effects of Zr-substitution on prompting electronic and Na-ion conductivity and also structural stabilization are reported. The optimized Na3.9 Mn0.95 Zr0.05 V(PO4 )3 /C sample shows ultrafast charge-discharge capability with discharge capacities of 108.8, 103.1, 99.1, and 88.0 mAh g-1 at 0.2, 1, 20, and 50 C, respectively, which is the best result for cation substituted NMVP samples reported so far. This sample also shows excellent cycling stability with a capacity retention of 81.2% at 1 C after 500 cycles. XRD analyses confirm the introduction of Zr into the lattice structure which expands the lattice volume and facilitates the Na+ diffusion. First-principle calculation indicates that Zr modification reduces the band gap energy and leads to increased electronic conductivity. In situ XRD analyses confirm the same structure evolution mechanism of the Zr-modified sample as pristine NMVP, however the strong ZrO bond obviously stabilizes the structure framework that ensures long-term cycling stability.

3.
J Clin Nurs ; 32(7-8): 1125-1134, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35665973

RESUMEN

AIMS AND OBJECTIVES: To establish a simple score that enables nurses to quickly, conveniently and accurately identify patients whose condition may change during intrahospital transport. BACKGROUND: Critically ill patients may experience various complications during intrahospital transport; therefore, it is important to predict their risk before they leave the emergency department. The existing scoring systems were not developed for this population. DESIGN: A prospective cohort study. METHODS: This study used convenience sampling and continuous enrolment from 1 January, 2019, to 30 June, 2021, and 584 critically ill patients were included. The collected data included vital signs and any condition change during transfer. The STROBE checklist was used. RESULTS: The median age of the modelling group was 74 (62, 83) years; 93 (19.7%) patients were included in the changed group, and 379 (80.3%) were included in the stable group. The five independent model variables (respiration, pulse, oxygen saturation, systolic pressure and consciousness) were statistically significant (p < .05). The above model was simplified based on beta coefficient values, and each variable was assigned 1 point, for a total score of 0-5 points. The AUC of the simplified score in the modelling group was 0.724 (95% CI: 0.682-0.764); the AUC of the simplified score in the validation group (112 patients) was 0.657 (95% CI: 0.566-0.741). CONCLUSIONS: This study preliminarily established a simplified scoring system for the prediction of risk during intrahospital transport from the emergency department to the intensive care unit. It provides emergency nursing staff with a simple assessment tool to quickly, conveniently and accurately identify a patient's transport risk. RELEVANCE TO CLINICAL PRACTICE: This study suggested the importance of strengthening the evaluation of the status of critical patients before intrahospital transport, and a simple score was formed to guide emergency department nurses in evaluating patients.


Asunto(s)
Enfermedad Crítica , Enfermería de Urgencia , Humanos , Estudios Prospectivos , Lista de Verificación , Estado de Conciencia
4.
Chem Commun (Camb) ; 59(2): 211-214, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36477702

RESUMEN

A micro-cubic Prussian blue (PB) with less coordinated water is first developed by electron exchange between graphene oxide and PB. The obtained reduced graphene oxide-PB composite exhibited increased redox reactions of the Fe sites and delivered ultrahigh specific capacity of 163.3 mA h g-1 (30 mA g-1) as well as excellent cycle stability as a cathode in sodium-ion batteries.

5.
ACS Nano ; 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583574

RESUMEN

Magnesium-sulfur (Mg-S) batteries are emerging as a promising alternative to lithium-ion batteries, due to their high energy density and low cost. Unfortunately, current Mg-S batteries typically suffer from the shuttle effect that originates from the dissolution of magnesium polysulfide intermediates, leading to several issues such as rapid capacity fading, large overcharge, severe self-discharge, and potential safety concern. To address these issues, here we harness a copper phosphide (Cu3P) modified separator to realize the adsorption of magnesium polysulfides and catalyzation of the conversion reaction of S and Mg2+ toward stable cycling of Mg-S cells. The bifunctional layer with Cu3P confined in a carbon matrix is coated on a commercial polypropylene membrane to form a porous membrane with high electrolyte wettability and good thermal stability. Density functional theory (DFT) calculations, polysulfide permeability tests, and post-mortem analysis reveal that the catalytic layer can adsorb polysulfides, effectively restraining the shuttle effect and facilitating the reversibility of the Mg-S cells. As a result, the Mg-S cells can achieve a high specific capacity, fast rates (449 mAh g-1 at 0.1 C and 249 mAh g-1 at 1.0 C), and a long cycle life (up to 500 cycles at 0.5 C) and operate even at elevated temperatures.

6.
Chem Commun (Camb) ; 58(98): 13661, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36448610

RESUMEN

Retraction of 'Prussian blue without coordinated water as a superior cathode for sodium-ion batteries' by Dezhi Yang et al., Chem. Commun., 2015, 51, 8181-8184, https://doi.org/10.1039/C5CC01180A.

7.
ACS Nano ; 16(11): 18058-18070, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36259968

RESUMEN

O3-Type layered oxides are widely studied as cathodes for sodium-ion batteries (SIBs) due to their high theoretical capacities. However, their rate capability and durability are limited by tortuous Na+ diffusion channels and complicated phase evolution during Na+ extraction/insertion. Here we report our findings in unravelling the mechanism for dramatically enhancing the stability and rate capability of O3-NaNi0.5Mn0.5-xSbxO2 (NaNMS) by substitutional Sb doping, which can alter the coordination environment and chemical bonds of the transition metal (TM) ions in the structure, resulting in a more stable structure with wider Na+ transport channels. Furthermore, NaNMS nanoparticles are obtained by surface energy regulation during grain growth. The synergistic effect of Sb doping and nanostructuring greatly reduces the ionic migration energy barrier while increasing the reversibility of the structural evolution during repeated Na+ extraction/insertion. An optimized NaNMS-1 electrode delivers a reversible capacity of 212.3 mAh g-1 at 0.2 C and 74.5 mAh g-1 at 50 C with minimal capacity loss after 100 cycles at a low temperature of -20 °C. Such electrochemical performance is superior to most of the reported layered oxide cathodes used in rechargeable SIBs.

8.
ACS Appl Mater Interfaces ; 14(12): 14253-14263, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35306808

RESUMEN

Sodium-ion batteries (SIBs) are on the verge of achieving practical applications, and the key is to find suitable electrode materials. The polyanionic iron-based material Na3.12Fe2.44(P2O7)2 (NFPO) possesses an open three-dimensional framework structure with good thermal stability and is regarded as an outstanding cathode material for SIBs. Nevertheless, its poor electrical conductivity, problems with erosion of electrolytes, and structural deterioration during cycling still need to be urgently addressed. Here, we first design a Mg2+-doped NFPO (NFPO-Mg) material with a dual-action effect. On the one hand, Mg2+ improves the intrinsic conductivity of the NFPO material, and on the other hand, Mg2+ promotes the formation of a homogeneous and stable cathode-electrolyte interphase film during the cycling process, which results in a superior rate performance and cycling stability. A capacity of 68.6 mAh g-1 was achieved at 50C (1C = 117.4 mAh g-1), and a capacity retention of 79.1% was maintained after 3000 cycles at 20C. More impressively, NFPO-Mg exhibits outstanding high-temperature electrochemical performance, with a capacity retention of 95.3% after 400 cycles at 10C at 60 °C (much higher than the 54.2% for the NFPO). This paper explores an effective method for improving the electrochemical performance of cathode materials, which may prove instrumental in guiding the design of more high-performance cathode materials in the future.

9.
Natl Sci Rev ; 9(2): nwab146, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35145703

RESUMEN

Rechargeable battery technologies have revolutionized electronics, transportation and grid energy storage. Many materials are being researched for battery applications, with layered transition metal oxides (LTMO) the dominating cathode candidate with remarkable electrochemical performance. Yet, daunting challenges persist in the quest for further battery developments targeting lower cost, longer lifespan, improved energy density and enhanced safety. This is, in part, because of the intrinsic complexity of real-world batteries, featuring sophisticated interplay among microstructural, compositional and chemical heterogeneities, which has motivated tremendous research efforts using state-of-the-art analytical techniques. In this research field, synchrotron techniques have been identified as a suite of effective methods for advanced battery characterization in a non-destructive manner with sensitivities to the lattice, electronic and morphological structures. This article provides a holistic overview of cutting-edge developments in synchrotron-based research on LTMO battery cathode materials. We discuss the complexity and evolution of LTMO's material properties upon battery operation and review recent synchrotron-based research works that address the frontier challenges and provide novel insights in this field. Finally, we formulate a perspective on future directions of synchrotron-based battery research, involving next-generation X-ray facilities and advanced computational developments.

10.
Nat Commun ; 13(1): 704, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121768

RESUMEN

Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries.

11.
Infect Dis Poverty ; 10(1): 131, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742353

RESUMEN

BACKGROUND: Tuberculosis (TB) caused Mycobacterium tuberculosis (M.tb) is one of infectious disease that lead a large number of morbidity and mortality all over the world. Although no reliable evidence has been found, it is considered that combining chemotherapeutic drugs with Chinese herbs can significantly improves the cure rate and the clinical therapeutic effect. METHODS: Multi-drug resistant pulmonary tuberculosis (MDR-PTB, n = 258) patients with Qi-yin deficiency syndrome will be randomly assigned into a treatment group (n = 172) or control/placebo group (n = 86). The treatment group will receive the chemotherapeutic drugs combined with Chinese herbs granules (1 + 3 granules), while the control group will receive the chemotherapeutic drugs combined with Chinese herbs placebo (1 + 3 placebo granules). In addition, MDR-PTB (n = 312) patients with Yin deficiency lung heat syndrome will be randomly assigned to a treatment (n = 208) or control/placebo (n = 104) group. The treatment group will receive the chemotherapeutic regimen combined with Chinese herbs granules (2 + 4 granules), while the control group will receive the chemotherapeutic drugs and Chinese herbs placebo (2 + 4 placebo granules). The primary outcome is cure rate, the secondary outcomes included time to sputum culture conversion, lesion absorption rate and cavity closure rate. BACTEC™ MGIT™ automated mycobacterial detection system will be used to evaluate the M.tb infection and drug resistance. Chi-square test and Cox regression will be conducted with SAS 9.4 Statistical software to analyze the data. DISCUSSION: The treatment cycle for MDR-PTB using standardized modern medicine could cause lengthy substantial side effects. Chinese herbs have been used for many years to treat MDR-PTB, but are without high-quality evidence. Hence, it is unknown whether Chinese herbs enhances the clinical therapeutic effect of synthetic drugs for treating MDR-PTB. Therefore, this study will be conducted to evaluate the clinical therapeutic effect of combining Chinese herbs and chemotherapeutic drugs to treat MDR-PTB cases. It will assist in screening new therapeutic drugs and establishing treatment plan that aims to improve the clinical therapeutic effect for MDR-PTB patients. TRIAL REGISTRATION: This trial was registered at ClinicalTrials.gov (ChiCTR1900027720) on 24 November 2019 (prospective registered).


Asunto(s)
Resistencia a Múltiples Medicamentos , Medicamentos Herbarios Chinos , Tuberculosis Pulmonar , China , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Tuberculosis Pulmonar/tratamiento farmacológico
12.
ACS Appl Mater Interfaces ; 13(42): 50065-50075, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34643393

RESUMEN

Copper sulfide with flower-like (f-CuS) and carambola-like (c-CuS) morphologies was successfully synthesized by a facile one-step solvothermal route with different surfactants. When employed as cathode catalysts for lithium-oxygen batteries (LOBs), f-CuS outperforms c-CuS in terms of oxygen electrochemistry, judging from the faster kinetics and the higher reversibility of oxygen reduction/oxidation reactions, as well as the better LOB performance. Moreover, an abnormal high-potential discharge plateau was observed in the discharge profile of the LOB. To understand the different performances of f-CuS and c-CuS and the abnormal high-potential plateau, theoretical calculations were conducted, based on which a mechanism was proposed and verified with experiments. On the whole, CuS can work as a multifunctional catalyst for promoting LOB performance, which means that the dissolved CuS in LiTFSI/TEGDME electrolyte can serve as a liquid catalyst by the redox couples of Cu(TFSI)2/Cu(TFSI)2-/Cu(TFSI)22-, in addition to the function as a traditional solid catalyst in the cathode.

13.
ACS Appl Mater Interfaces ; 13(29): 34074-34083, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34270893

RESUMEN

Iron phosphide with high specific capacity has emerged as an appealing candidate for next-generation lithium-ion battery anodes. However, iron phosphide could undergo conversion reactions and generally suffer from a rapid capacity degradation upon cycling due to its structure pulverization. Chemomechanical breakdown of iron phosphide due to its rigidity has been a challenge to fully realizing its electrochemical performance. To address this challenge, we report here on an enticing opportunity: a flexible, free-standing iron phosphide anode with Fe2P nanoparticles confined in carbon nanofibers may overcome existing challenges. For the synthesis, we introduce a facile electrospinning strategy that enables in situ formation of Fe2P within a carbon matrix. Such a carbon matrix can effectively minimize the structure change of Fe2P particles and protect them from pulverization, allowing the electrodes to retain a free-standing structure after long-term cycling. The produced electrodes showed excellent electrochemical performance in lithium-ion half and full cells, as well as in flexible pouch cells. These results demonstrate the successful development of iron phosphide materials toward high capacity, light weight, and flexible energy storage.

15.
ACS Appl Mater Interfaces ; 13(15): 17726-17735, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33821614

RESUMEN

Constructing a rational electrode structure for supercapacitors is critical to accelerate the electrochemical kinetics process and thus promote the capacitance. Focusing on the flexible supercapacitor electrode, we synthesized a three-dimensional (3D) porous polypyrrole (PPy) film using a modified vapor phase polymerization method with the use of a porous template (CaCO3). The porous design provided the PPy film with an improved surface area and pore volume. The porous PPy film electrode was studied as a binder-free electrode for supercapacitors. It was found that the abundant interpenetrated pores created by the CaCO3 templates within the 3D framework are beneficial to overcoming the diffusion-controlled limit in the overall electrochemical process. It was revealed by electrochemical investigation that a more pseudocapacitive contribution than diffusion-controlled process contribution was observed in the total charge in the redox reaction. The galvanostatic charge/discharge (GCD) measurements showed that the optimized 3D porous PPy film electrode delivered a high capacitance of 313.6 F g-1 and an areal capacitance of 98.0 mF cm-2 at 1.0 A g-1 in a three-electrode configuration, which is nearly three times that of the dense counterpart electrode synthesized in the absence of the CaCO3 template. A specific capacitance of 62.5 F g-1 at 0.5 A g-1 and 31.1 F g-1 at 10 A g-1 was obtained in a symmetric capacitor device. In addition, the porous structure provided the PPy film with the attractive capability of accommodating the volume change during the doping/dedoping process. This is essential for the PPy film to maintain a long cycling life in a practical operation for a supercapacitor. It turned out that a high capacitance retention up to 81.3% after 10,000 GCD cycles was obtained for the symmetric supercapacitor device with the 3D porous PPy electrode (57.1% capacitive retention was observed for the dense PPy electrode). The strategy and the insight analysis are expected to provide valuable guidance for the design and the synthesis of flexible and wearable film electrodes with high performance.

16.
Dalton Trans ; 50(13): 4555-4566, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33729235

RESUMEN

The advancement of novel synthetic approaches for micro/nanostructural manipulation of transition metal phosphide (TMP) materials with precisely controlled engineering is crucial to realize their practical use in batteries. Here, we develop a novel spray-drying strategy to construct three-dimensional (3D) N,P co-doped graphene (G-NP) microspheres embedded with core-shell CoP@C and MoP@C nanoparticles (CoP@C⊂G-NP, MoP@⊂G-NP). This intentional design shows a close correlation between the microstructural G-NP and chemistry of the core-shell CoP@C/MoP@C nanoparticle system that contributes towards their anode performance in lithium-ion batteries (LIBs). The obtained structure features a conformal porous G-NP framework prepared via the co-doping of heteroatoms (N,P) that features a 3D conductive highway that allows rapid ion and electron passage and maintains the overall structural integrity of the material. The interior carbon shell can efficiently restrain volume evolution and prevent CoP/MoP nanoparticle aggregation, providing excellent mechanical stability. As a result, the CoP@C⊂G-NP and MoP@⊂G-NP composites deliver high specific capacities of 823.6 and 602.9 mA h g-1 at a current density of 0.1 A g-1 and exhibit excellent cycling stabilities of 438 and 301 mA h g-1 after 500 and 800 cycles at 1 A g-1. The present work details a novel approach to fabricate core-shell TMPs@C⊂G-NP-based electrode materials for use in next-generation LIBs and can be expanded to other potential energy storage applications.

17.
Intensive Crit Care Nurs ; 64: 103015, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33610439

RESUMEN

OBJECTIVES: The aim of this study was to assess the value of the National Early Warning Score and Worthing Physiological Scoring System for predicting changes in the condition of critical cases during transfer from the emergency department to the intensive care unit. METHODS: This prospective single-centre study was conducted at a 1759-bed hospital in Beijing. We recorded the vital signs in the cases before leaving the emergency department and their changes in condition during transit. RESULTS: A total of 258 critically ill cases were included. Forty-four cases (17.05%) exhibited changes in their condition during transit. Compared with cases with NEWS ≤ 5, cases with NEWS > 5 were more likely to experience changes with an OR of 5.744 (95% CI 2.888-11.426). Compared with cases with WPS ≤ 2, cases with WPS > 2 were more likely to experience changes with an OR of 7.217 (95% CI 3.575-14.569). The difference between the areas under the curve of the NEWS (0.751 ± 0.045) and the WPS (0.736 ± 0.045) was not statistically significant (P = 0.4518). CONCLUSION: In our study, the Worthing Physiological Scoring System and National Early Warning Score both exhibited good discriminatory power, but the Worthing Physiological Scoring System is simpler to use and more suitable for use in a busy emergency department.


Asunto(s)
Puntuación de Alerta Temprana , Estudios de Cohortes , Servicio de Urgencia en Hospital , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Estudios Prospectivos , Estudios Retrospectivos
18.
ACS Appl Mater Interfaces ; 13(3): 3793-3804, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33448216

RESUMEN

P2-Na0.67Ni0.33Mn0.67O2 presents high working voltage with a theoretical capacity of 173 mAh g-1. However, the lattice oxygen on the particle surface participates in the redox reactions when the material is charged over 4.22 V. The resulting oxidized oxygen aggravates the electrolyte decomposition and transition metal dissolution, which cause severe capacity decay. The commonly reported cation substitution methods enhance the cycle stability by suppressing the high voltage plateau but lead to lower average working voltage and reduced capacity. Herein, we stabilized the lattice oxygen by a small amount of Sn substitution based on the strong Sn-O bond without sacrificing the high voltage performance and further protected the particle surface by polypyrrole (PPy) coating. The obtained Na0.67Ni0.33Mn0.63Sn0.04O2@PPy (3.3 wt %) composite showed excellent cycling stability with a reversible capacity of 137.6 (10) and 120.0 mAh g-1 (100 mA g-1) with a capacity retention of 95% (10 mA g-1, 50 cycles) and 82.5% (100 mA g-1, 100 cycles), respectively. The present work indicates that slight Sn substitution combined with PPy coating could be an effective approach to achieving superior cycling stability for high-voltage layered transition metal oxides.

19.
ACS Appl Mater Interfaces ; 13(1): 503-513, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33372775

RESUMEN

Heterogeneous electrocatalytic reactions only occur at the interface between the electrocatalyst and reactant. Therefore, the active sites are only necessary to be distributed on the surface of the electrocatalyst. Based on this motivation, here, we demonstrate a systematic study on surface tuning for a carbon-based electrocatalyst from metal-free (with the heteroatoms N and S, NS/C) to metal-containing surfaces (with Co, N, and S, CoNS/C). The CoNS/C electrocatalyst was obtained by pyrolyzing the Co precoordinated and p-toluenesulfonate-doped polypyrrole (PPy). It was found that the coordination of Co on the PPy ring tuned the final carbon electrocatalyst into a catalyst with a CoNx moiety-rich surface. In addition, the as-synthesized CoNS/C was determined to have a very high loading of cobalt up to 2.02 wt %. The pyrolysis of the cobalt-containing precursor tends to proceed toward a characteristic of a higher sp2 carbon content, a higher surface area, and more nitrogen as well as active nitrogen sites than its metal-free counterpart. The most distinguished feature for such a catalyst is that the truly most active component is only distributed on the surface, in contrast with that of the conventional metal-N-based catalyst present throughout the bulky structure. Especially, the electrocatalytic activity toward oxygen evolution reaction (OER) has been investigated experimentally and theoretically. The results showed that the OER performance of the carbon-based electrocatalyst was remarkably boosted after the introduction of Co with an overpotential decrease from 678 to 345 mV at 10 mA cm-2. Furthermore, CoNS/C displayed an excellent durability upon a long-term measurement. The apparent activation energy measurements revealed that the metal-rich surface contributed to overcome the energy barrier for OER. In addition, density functional theory calculations have been conducted to explain the correlated OER mechanism. This study is expected to provide an effective strategy for the design and the synthesis of highly active metal-nitrogen-type electrocatalysts with a high metal loading for various electrocatalytic reactions.

20.
Chem Soc Rev ; 50(2): 1138-1187, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33245736

RESUMEN

High temperature proton exchange membrane fuel cells (HT-PEMFCs) are one type of promising energy device with the advantages of fast reaction kinetics (high energy efficiency), high tolerance to fuel/air impurities, simple plate design, and better heat and water management. They have been expected to be the next generation of PEMFCs specifically for application in hydrogen-fueled automobile vehicles and combined heat and power (CHP) systems. However, their high-cost and low durability interposed by the insufficient performance of key materials such as electrocatalysts and membranes at high temperature operation are still the challenges hindering the technology's practical applications. To develop high performance HT-PEMFCs, worldwide researchers have been focusing on exploring new materials and the related technologies by developing novel synthesis methods and innovative assembly techniques, understanding degradation mechanisms, and creating mitigation strategies with special emphasis on catalysts for oxygen reduction reaction, proton exchange membranes and bipolar plates. In this paper, the state-of-the-art development of HT-PEMFC key materials, components and device assembly along with degradation mechanisms, mitigation strategies, and HT-PEMFC based CHP systems is comprehensively reviewed. In order to facilitate further research and development of HT-PEMFCs toward practical applications, the existing challenges are also discussed and several future research directions are proposed in this paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...