Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685087

RESUMEN

Hyperspectral imaging (HSI) has been applied to assess the texture profile analysis (TPA) of processed meat. However, whether the texture profiles of live fish muscle could be assessed using HSI has not been determined. In this study, we evaluated the texture profile of four muscle regions of live common carp by scanning the corresponding skin regions using HSI. We collected skin hyperspectral information from four regions of 387 scaled and live common carp. Eight texture indicators of the muscle corresponding to each skin region were measured. With the skin HSI of live common carp, six machine learning (ML) models were used to predict the muscle texture indicators. Backpropagation artificial neural network (BP-ANN), partial least-square regression (PLSR), and least-square support vector machine (LS-SVM) were identified as the optimal models for predicting the texture parameters of the dorsal (coefficients of determination for prediction (rp) ranged from 0.9191 to 0.9847, and the root-mean-square error for prediction ranged from 0.1070 to 0.3165), pectoral (rp ranged from 0.9033 to 0.9574, and RMSEP ranged from 0.2285 to 0.3930), abdominal (rp ranged from 0.9070 to 0.9776, and RMSEP ranged from 0.1649 to 0.3601), and gluteal (rp ranged from 0.8726 to 0.9768, and RMSEP ranged from 0.1804 to 0.3938) regions. The optimal ML models and skin HSI data were employed to generate visual prediction maps of TPA values in common carp muscles. These results demonstrated that skin HSI and the optimal models can be used to rapidly and accurately determine the texture qualities of different muscle regions in common carp.

2.
Dis Markers ; 2022: 7550090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251376

RESUMEN

OBJECTIVE: The aims of our experiment were to compare the microorganisms in meibomian gland secretions from patients with internal hordeolum before and after treatment using hypochlorous acid eyelid wipes, to elucidate the mechanism underlying hypochlorous acid eyelid wipe treatment of internal hordeolum. METHODS: This was a prospective, matched-pair study. A total of eight patients with internal hordeolum who attended the ophthalmology clinic of our hospital from April to August 2020 were included. Meibomian gland secretions were collected from subjects before treatment (Group A) and from patients cured after eyelid cleaning with hypochlorous acid eyelid wipes for 7 days (Group B). Samples were submitted to 16S rRNA high-throughput sequencing, and the resulting data were analyzed to compare the differences in the structure and composition of meibomian gland secretion microbial flora before and after treatment of internal hordeolum. RESULTS: A total of 2127 operational taxonomic units were obtained from the two groups of samples, and there was no significant difference in alpha diversity before and after eyelid cleaning. At the phylum level, there was no significant difference between the two groups. The predominant phyla in Group A included the following: Firmicutes (32.78% ± 20.16%), Proteobacteria (26.73% ± 7.49%), Acidobacteria (10.58% ± 11.45%), Bacteroidetes (9.05% ± 6.63%), Actinobacteria (8.48% ±1.77%), and Chloroflexi (3.15% ± 3.12%), while those in Group B were the following: Proteobacteria (31.86% ± 9.69%), Firmicutes (29.07% ± 24.20%), Acidobacteria (11.33% ± 7.53%), Actinobacteria (7.10% ± 1.98%), Bacteroidetes (5.39% ± 5.17%), and Chloroflexi (3.89% ± 3.67%). Starting from the class level, significant differences in microbial communities were detected before and after eyelid cleaning (P < 0.05). Linear discriminant analysis effect size analysis showed the core flora in Group A microbiome comprising Actinobacteria, Staphylococcus, Staphylococcaceae, Staphylococcus aureus, Ruminococcacea UCg-014, Ruminococcacea-UCG-014, Halomonadaceae, Neisseria, Methylobacterium, Frankiales, and Neisseria sicca, while those in Group B microbial were Streptococcus sp., Blautia, Bifidobacterium pseudocatenulatum, Subdoligranulum, Subdoligranulum variabile, Faecalibacterium, and Faecalibacterium prausnitzii. CONCLUSION: Eyelid cleaning with hypochlorous acid eyelid wipes does not change the biodiversity in the meibomian gland secretions of patients with internal hordeolum. Hypochlorous acid eyelid wipes may affect the internal hordeolum through broad-spectrum antibacterial action to effectively reduce the relative abundance of symbiotic pathogens, such as Staphylococcus, Neisseria, Actinomycetes, and Ruminococcus and increase that of Faecalibacterium prausnitzii and other symbiotic probiotics with anti-inflammatory effects.


Asunto(s)
Bacterias/genética , Orzuelo/tratamiento farmacológico , Ácido Hipocloroso/uso terapéutico , Glándulas Tarsales/microbiología , Microbiota , Oxidantes/uso terapéutico , Adulto , Biodiversidad , Femenino , Humanos , Masculino , Estudios Prospectivos , ARN Ribosómico 16S/genética
3.
Br J Pharmacol ; 178(20): 4155-4175, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216027

RESUMEN

BACKGROUND AND PURPOSE: Endothelium-derived hyperpolarizing factor (EDHF) has been suggested as a therapeutic target for vascular protection against ischaemic brain injury. However, the molecular entity of EDHF and its action on neurons remains unclear. This study was undertaken to demonstrate whether the hydrogen sulfide (H2 S) acts as EDHF and exerts neuroprotective effect via large-conductance Ca2+ -activated K+ (BKCa /KCa 1.1) channels. EXPERIMENTAL APPROACH: The whole-cell patch-clamp technology was used to record the changes of BKCa currents in rat neurons induced by EDHF. The cerebral ischaemia/reperfusion model of mice and oxygen-glucose deprivation/reoxygenation (OGD/R) model of neurons were used to explore the neuroprotection of EDHF by activating BKCa channels in these neurons. KEY RESULTS: Increases of BKCa currents and membrane hyperpolarization in hippocampal neurons induced by EDHF could be markedly inhibited by BKCa channel inhibitor iberiotoxin or endothelial H2 S synthase inhibitor propargylglycine. The H2 S donor, NaHS-induced BKCa current and membrane hyperpolarization in neurons were also inhibited by iberiotoxin, suggesting that H2 S acts as EDHF and activates the neuronal BKCa channels. Besides, we found that the protective effect of endothelium-derived H2 S against mice cerebral ischaemia/reperfusion injury was disrupted by iberiotoxin. Importantly, the inhibitory effect of NaHS or BKCa channel opener on OGD/R-induced neuron injury and the increment of intracellular Ca2+ level could be inhibited by iberiotoxin but enhanced by co-application with L-type but not T-type calcium channel inhibitor. CONCLUSION AND IMPLICATIONS: Endothelium-derived H2 S acts as EDHF and exerts neuroprotective effects via activating the BKCa channels and then inhibiting the T-type calcium channels in hippocampal neurons.


Asunto(s)
Sulfuro de Hidrógeno , Fármacos Neuroprotectores , Canales de Potasio Calcio-Activados , Animales , Factores Biológicos , Endotelio , Sulfuro de Hidrógeno/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...