Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Chim Acta ; 565: 119944, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244141

RESUMEN

Free thyroid hormone (FTH) serves as the preferred indicator for the clinical assessment of thyroid function, mainly encompassing free thyroxine and free triiodothyronine. The immunoassay commonly employed in the clinical setting exhibits certain unresolvable deficiencies. The results of over 5,500 clinical laboratories for FTH from China in 2024 demonstrated that the outcomes of immunoassay were not comparable, with robust CVs calculated in accordance with ISO 13528 ranging from 13.82% to 21.42%. Establishing reference methods is an important tool to achieve accurate and comparable results of free hormones. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) holds a distinct advantage in the precise detection of small molecules, and two reference methods for free thyroxine based on LC-MS/MS are included in the JCTLM list. This article conducts a comprehensive review of the detection methods and standardization of FTH. It presents the metabolism of thyroid hormones, the significance of detection, the techniques, and application examples of free thyroid hormone assays, and deliberates on the current status, prospects, and recommendations for the standardization of FTH assays. Immunoassay and LC-MS/MS, as significant techniques for FTH detection, are predominantly emphasized in the case references. Ultrafiltration and equilibrium dialysis, which are utilized to separate FTH, are also addressed. This article aims to discuss the status quo of FTH detection and clarify the advantages of LC-MS/MS in FTH detection, propose that LC-MS/MS can be utilized as an auxiliary validation method or alternative method in clinical applications, and offer suggestions for the standardization of testing results.

2.
Clin Chim Acta ; 557: 117859, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518968

RESUMEN

BACKGROUND: This study assessed the alternations of kynurenine pathway (KP) and neopterin in type 2 diabetes mellitus (T2DM) and explored possible differential metabolites. METHODS: A fresh residual sera panel was collected from 80 healthy control (HC) individuals and 72 T2DM patients. Metabolites/ratios of interest including tryptophan (TRP), kynurenine (KYN), 5-hydroxytryptamine (5HT), kynurenic acid (KA), xanthurenic acid (XA), neopterin (NEO), KA/KYN ratio and KYN/TRP ratio were determined using a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics approach, and the difference between groups was assessed. Supervised orthogonal partial least squares-discriminant analysis and differential metabolite screening with fold change (FC) were performed to identify distinct biomarkers. The diagnostic performance of KP metabolites in T2DM was evaluated. RESULTS: Significant decreases of TRP, 5HT, KA, XA, and KA/KYN and increases of KYN/TRP and NEO in T2DM compared to HC group were observed (P < 0.05). The KP metabolites panel significantly changed between T2DM and HC groups (Q2: 0.925, P < 0.005). 5HT (FC: 0.63, P < 0.01) and NEO (FC: 3.27, P < 0.01) were proven to be distinct differential metabolites. A combined testing of fasting plasma glucose and KYN/TRP showed good value in the prediction of T2DM (AUC: 0.904, 95% CI 0.843-0.947). CONCLUSIONS: The targeted LC-MS/MS metabolomics study is a powerful tool for evaluating the status of T2DM. This study facilitated the application of KP metabolomics into future clinical practice. 5HT and NEO are promising biomarkers in T2DM. KYN/TRP was highly associated with the development of T2DM and may serve as a potential treatment target.


Asunto(s)
Diabetes Mellitus Tipo 2 , Quinurenina , Humanos , Quinurenina/metabolismo , Neopterin , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Triptófano/metabolismo , Biomarcadores
3.
Clin Chem Lab Med ; 62(6): 1092-1100, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38253403

RESUMEN

OBJECTIVES: The standardization of cystatin C (CysC) measurement has received increasing attention in recent years due to its importance in estimating glomerular filtration rate (GFR). Mass spectrometry-based assays have the potential to provide an accuracy base for CysC measurement. However, a precise, accurate and sustainable LC-MS/MS method for CysC is still lacking. METHODS: The developed LC-MS/MS method quantified CysC by detecting signature peptide (T3) obtained from tryptic digestion. Stable isotope labeled T3 peptide (SIL-T3) was spiked to control matrix effects and errors caused by liquid handling. The protein denaturation, reduction and alkylation procedures were combined into a single step with incubation time of 1 h, and the digestion lasted for 3.5 h. In the method validation, digestion time-course, imprecision, accuracy, matrix effect, interference, limit of quantification (LOQ), carryover, linearity, and the comparability to two routine immunoassays were evaluated. RESULTS: No significant matrix effect or interference was observed with the CysC measurement. The LOQ was 0.21 mg/L; the within-run and total imprecision were 1.33-2.05 % and 2.18-3.90 % for three serum pools (1.18-5.34 mg/L). The LC-MS/MS method was calibrated by ERM-DA471/IFCC and showed good correlation with two immunoassays traceable to ERM-DA471/IFCC. However, significant bias was observed for immunoassays against the LC-MS/MS method. CONCLUSIONS: The developed LC-MS/MS method is robust and simpler and holds the promise to provide an accuracy base for routine immunoassays, which will promote the standardization of CysC measurement.


Asunto(s)
Cistatina C , Cromatografía Líquida con Espectrometría de Masas , Humanos , Cistatina C/sangre , Inmunoensayo/métodos , Límite de Detección , Cromatografía Líquida con Espectrometría de Masas/métodos , Espectrometría de Masas en Tándem/métodos
4.
Clin Chem Lab Med ; 62(1): 67-76, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-37470745

RESUMEN

OBJECTIVES: This study aims to evaluate the commutability of external quality assessment (EQA) materials and candidate reference materials (RMs) for plasma renin activity (PRA) assay. METHODS: Commutabilities of 16 candidate RMs were measured along with 40 clinical samples by the four different routine PRA assays, including three LC‒MS/MS assays and one chemiluminescence immunoassay. Sixteen candidate RMs included native/spiked human plasma pools (small-scale pools with <50 individuals) and current EQA materials (large-scale pools with >1,000 individuals). Difference in bias approach and linear regression with prediction interval approach were adopted to determine the commutability. Two-way variance analysis was used to estimate the effects of spiked and pool size on the commutability. Stability and homogeneity studies were performed. RESULTS: Precision and correlation performance of all assays was acceptable. In the difference in bias approach, the commutability results were not satisfactory (noncommutability: 14/16) and significant sample-specific effects were detected in assay pairs using different incubation buffers. For the prediction interval approach, no commutability was observed in the spiked small-scale pools; EQA materials (4/9) had more satisfactory commutability among all assays than the small-scale pools (2/7); RMs of large-scale pools tend to have better commutability no matter spiked or not. CONCLUSIONS: Commutable RMs were obtainable but challenging. Current EQA materials with relatively good commutability, stability, and homogeneity were appropriate RMs. Large-scale pools are tending to be commutable. Spiking in small-scale pools was not suggested to prepare RMs. MPs adopting a uniform incubation buffer would be preferable for further commutability research.


Asunto(s)
Renina , Espectrometría de Masas en Tándem , Humanos , Estándares de Referencia , Cromatografía Liquida , Sesgo
5.
Clin Chim Acta ; 549: 117531, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37673380

RESUMEN

BACKGROUND: This study aims to investigate serological characteristics of kynurenine pathway (KP) metabolites in healthy controls (HC) and gout patients and explore possible differential metabolites. METHODS: A total of 191 individual fresh residual sera was collected from 129 HC and 62 gout patients. A liquid chromatography-tandem mass spectrometry method was fully validated to measure 6 metabolites, including tryptophan (TRP), kynurenine (KYN), 5-hydroxytryptamine (5HT), kynurenic acid (KA), xanthurenic acid (XA), and neopterin (NEO). Supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) and differential metabolite screening with fold change (FC) were performed to identify intrinsic variations and differential levels of KP metabolites between the HC and gout groups. Logistic regression was used to assess the contributions of KP metabolites to gout. RESULTS: There were significant decreases of TRP, 5HT, XA, and NEO and increases of KYN, KA, KA/KYN, and KYN/TRP in gout patients compared to the HC group (all p < 0.05). KP metabolites of the gout group showed good discrimination from those of the HC group (Q2: 0.892). Two distinct different metabolites were identified in gout, i.e., XA (FC: 0.56, p < 0.01) and NEO (FC: 0.34, p < 0.01). Of the KP metabolites, KYN was strongly associated with gout (OR: 7.91, p < 0.01). CONCLUSIONS: Abnormal levels of serum KP metabolites were observed in gout. XA and NEO are promising biomarkers that were relevant to the status of gout. The level of KYN could be an attractive checkpoint for the management of gout. Continuous monitoring of KP metabolism in gout provides new opportunities to predict therapeutic efficacy and prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA