Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240354

RESUMEN

Dendritic cells (DC) are critical cellular mediators of host immunity, notably by expressing a broad panel of pattern recognition receptors. One of those receptors, the C-type lectin receptor DC-SIGN, was previously reported as a regulator of endo/lysosomal targeting through functional connections with the autophagy pathway. Here, we confirmed that DC-SIGN internalization intersects with LC3+ autophagy structures in primary human monocyte-derived dendritic cells (MoDC). DC-SIGN engagement promoted autophagy flux which coincided with the recruitment of ATG-related factors. As such, the autophagy initiation factor ATG9 was found to be associated with DC-SIGN very early upon receptor engagement and required for an optimal DC-SIGN-mediated autophagy flux. The autophagy flux activation upon DC-SIGN engagement was recapitulated using engineered DC-SIGN-expressing epithelial cells in which ATG9 association with the receptor was also confirmed. Finally, Stimulated emission depletion (STED) microscopy performed in primary human MoDC revealed DC-SIGN-dependent submembrane nanoclusters formed with ATG9, which was required to degrade incoming viruses and further limit DC-mediated transmission of HIV-1 infection to CD4+ T lymphocytes. Our study unveils a physical association between the Pattern Recognition Receptor DC-SIGN and essential components of the autophagy pathway contributing to early endocytic events and the host's antiviral immune response.


Asunto(s)
VIH-1 , Humanos , VIH-1/fisiología , Antivirales/metabolismo , Células Dendríticas , Lectinas Tipo C/metabolismo , Autofagia
2.
Emerg Microbes Infect ; 12(1): 2156815, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36495563

RESUMEN

Usutu (USUV) and West Nile (WNV) viruses are two closely related Flavivirus belonging to Japanese encephalitis virus serogroup. Evidence of increased circulation of these two arboviruses now exist in Europe. Neurological disorders are reported in humans mainly for WNV, despite the fact that the interaction and effects of viral infections on the neurovasculature are poorly described, notably for USUV. Using a human in vitro blood-brain barrier (BBB) and a mouse model, this study characterizes and compares the cerebral endothelial cell permissiveness, innate immunity and inflammatory responses and immune cell recruitment during infection by USUV and WNV. Both viruses are able to infect and cross the human BBB but with different consequences. We observed that WNV infects BBB cells resulting in significant endothelium impairment, potent neuroinflammation and immune cell recruitment, in agreement with previous studies. USUV, despite being able to infect BBB cells with higher replication rate than WNV, does not strongly affect endothelium integrity. Importantly, USUV also induces neuroinflammation, immune cell recruitment such as T lymphocytes, monocytes and dendritic cells (DCs) and was able to infect dendritic cells (DCs) more efficiently compared to WNV, with greater propensity for BBB recruitment. DCs may have differential roles for neuroinvasion of the two related viruses.


Asunto(s)
Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Ratones , Humanos , Enfermedades Neuroinflamatorias , Barrera Hematoencefálica
3.
Cell Chem Biol ; 29(7): 1113-1125.e6, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35728599

RESUMEN

The increasingly frequent outbreaks of pathogenic viruses have underlined the urgent need to improve our arsenal of antivirals that can be deployed for future pandemics. Innate immunity is a powerful first line of defense against pathogens, and compounds that boost the innate response have high potential to act as broad-spectrum antivirals. Here, we harnessed localization-dependent protein-complementation assays (called Alpha Centauri) to measure the nuclear translocation of interferon regulatory factors (IRFs), thus providing a readout of innate immune activation following viral infection that is applicable to high-throughput screening of immunomodulatory molecules. As proof of concept, we screened a library of kinase inhibitors on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and identified Gilteritinib as a powerful enhancer of innate responses to viral infection. This immunostimulatory activity of Gilteritinib was found to be dependent on the AXL-IRF7 axis and results in a broad and potent antiviral activity against unrelated RNA viruses.


Asunto(s)
COVID-19 , Virosis , Antivirales/farmacología , Humanos , Inmunidad Innata , SARS-CoV-2 , Virosis/tratamiento farmacológico
4.
Front Immunol ; 13: 862053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529884

RESUMEN

To gain access to the brain, a so-called immune-privileged organ due to its physical separation from the blood stream, pathogens and particularly viruses have been selected throughout evolution for their use of specific mechanisms. They can enter the central nervous system through direct infection of nerves or cerebral barriers or through cell-mediated transport. Indeed, peripheral lymphoid and myeloid immune cells can interact with the blood-brain and the blood-cerebrospinal fluid barriers and allow viral brain access using the "Trojan horse" mechanism. Among immune cells, at the frontier between innate and adaptive immune responses, dendritic cells (DCs) can be pathogen carriers, regulate or exacerbate antiviral responses and neuroinflammation, and therefore be involved in viral transmission and spread. In this review, we highlight an important contribution of DCs in the development and the consequences of viral brain infections.


Asunto(s)
Células Dendríticas , Virosis , Encéfalo , Sistema Nervioso Central , Humanos , Células Mieloides
5.
Nat Commun ; 13(1): 2442, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508460

RESUMEN

Interferon restricts SARS-CoV-2 replication in cell culture, but only a handful of Interferon Stimulated Genes with antiviral activity against SARS-CoV-2 have been identified. Here, we describe a functional CRISPR/Cas9 screen aiming at identifying SARS-CoV-2 restriction factors. We identify DAXX, a scaffold protein residing in PML nuclear bodies known to limit the replication of DNA viruses and retroviruses, as a potent inhibitor of SARS-CoV-2 and SARS-CoV replication in human cells. Basal expression of DAXX is sufficient to limit the replication of SARS-CoV-2, and DAXX over-expression further restricts infection. DAXX restricts an early, post-entry step of the SARS-CoV-2 life cycle. DAXX-mediated restriction of SARS-CoV-2 is independent of the SUMOylation pathway but dependent on its D/E domain, also necessary for its protein-folding activity. SARS-CoV-2 infection triggers the re-localization of DAXX to cytoplasmic sites and promotes its degradation. Mechanistically, this process is mediated by the viral papain-like protease (PLpro) and the proteasome. Together, these results demonstrate that DAXX restricts SARS-CoV-2, which in turn has evolved a mechanism to counteract its action.


Asunto(s)
COVID-19 , SARS-CoV-2 , Sistemas CRISPR-Cas , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Humanos , Interferones/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
6.
Emerg Microbes Infect ; 11(1): 761-774, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35191820

RESUMEN

Usutu virus (USUV) and West Nile virus (WNV) are phylogenetically close emerging arboviruses and constitute a global public health threat. Since USUV and WNV are transmitted by mosquitoes, the first immune cells they encounter are skin-resident dendritic cells, the most peripheral outpost of immune defense. This unique network is composed of Langerhans cells (LCs) and dermal DCs, which reside in the epidermis and the dermis, respectively. Using human skin explants, we show that while both viruses can replicate in keratinocytes, they can also infect resident DCs with distinct tropism: WNV preferentially infects DCs in the dermis, whereas USUV has a greater propensity to infect LCs. Using both purified human epidermal LCs (eLCs) and monocyte derived LCs (MoLCs), we confirm that LCs sustain a faster and more efficient replication of USUV than WNV and that this correlates with a more intense innate immune response to USUV compared with WNV. Next, we show that ectopic expression of the LC-specific C-type lectin receptor (CLR), langerin, in HEK293T cells allows WNV and USUV to bind and enter, but supports the subsequent replication of USUV only. Conversely, blocking or silencing langerin in MoLCs or eLCs made them resistant to USUV infection, thus demonstrating that USUV uses langerin to enter and replicate in LCs. Altogether, our results demonstrate that LCs constitute privileged target cells for USUV in human skin, because langerin favours its entry and replication. Intriguingly, this suggests that USUV efficiently escapes the antiviral functions of langerin, which normally safeguards LCs from most viral infections.


Asunto(s)
Infecciones por Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Flavivirus , Células HEK293 , Humanos , Células de Langerhans , Virus del Nilo Occidental/genética
7.
Viruses ; 13(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34835003

RESUMEN

Intrinsic immunity is orchestrated by a wide range of host cellular proteins called restriction factors. They have the capacity to interfere with viral replication, and most of them are tightly regulated by interferons (IFNs). In addition, their regulation through post-translational modifications (PTMs) constitutes a major mechanism to shape their action positively or negatively. Following viral infection, restriction factor modification can be decisive. Palmitoylation of IFITM3, SUMOylation of MxA, SAMHD1 and TRIM5α or glycosylation of BST2 are some of those PTMs required for their antiviral activity. Nonetheless, for their benefit and by manipulating the PTMs machinery, viruses have evolved sophisticated mechanisms to counteract restriction factors. Indeed, many viral proteins evade restriction activity by inducing their ubiquitination and subsequent degradation. Studies on PTMs and their substrates are essential for the understanding of the antiviral defense mechanisms and provide a global vision of all possible regulations of the immune response at a given time and under specific infection conditions. Our aim was to provide an overview of current knowledge regarding the role of PTMs on restriction factors with an emphasis on their impact on viral replication.


Asunto(s)
Interacciones Huésped-Patógeno , Procesamiento Proteico-Postraduccional , Virosis , Antígenos CD , Factores de Restricción Antivirales , Proteínas Ligadas a GPI , Glicosilación , Humanos , Proteínas de la Membrana , Proteínas de Resistencia a Mixovirus , Proteínas de Unión al ARN , Proteína 1 que Contiene Dominios SAM y HD , Sumoilación , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas Virales/metabolismo , Replicación Viral/fisiología
8.
EMBO J ; 40(16): e106540, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34121210

RESUMEN

Dendritic cells (DC) subsets, like Langerhans cells (LC), are immune cells involved in pathogen sensing. They express specific antimicrobial cellular factors that are able to restrict infection and limit further pathogen transmission. Here, we identify the alarmin S100A9 as a novel intracellular antiretroviral factor expressed in human monocyte-derived and skin-derived LC. The intracellular expression of S100A9 is decreased upon LC maturation and inversely correlates with enhanced susceptibility to HIV-1 infection of LC. Furthermore, silencing of S100A9 in primary human LC relieves HIV-1 restriction while ectopic expression of S100A9 in various cell lines promotes intrinsic resistance to both HIV-1 and MLV infection by acting on reverse transcription. Mechanistically, the intracellular expression of S100A9 alters viral capsid uncoating and reverse transcription. S100A9 also shows potent inhibitory effect against HIV-1 and MMLV reverse transcriptase (RTase) activity in vitro in a divalent cation-dependent manner. Our findings uncover an unexpected intracellular function of the human alarmin S100A9 in regulating antiretroviral immunity in Langerhans cells.


Asunto(s)
Alarminas/genética , Calgranulina B/genética , VIH-1/fisiología , Células de Langerhans/virología , Virus de la Leucemia Murina de Moloney/fisiología , Infecciones por Retroviridae/prevención & control , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Cricetulus , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Células de Langerhans/inmunología , Leucemia Experimental/prevención & control , Ratones , Virus de la Leucemia Murina de Moloney/genética , Transcripción Reversa , Factor de Crecimiento Transformador beta/inmunología , Infecciones Tumorales por Virus/prevención & control , Replicación Viral
9.
J Virol ; 95(8)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33514628

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 19 (COVID-19), which ranges from mild respiratory symptoms to acute respiratory distress syndrome, and death in the most severe cases. Immune dysregulation with altered innate cytokine responses is thought to contribute to disease severity. Here, we characterized in depth host cell responses against SARS-CoV-2 in primary human airway epithelia (HAE) and immortalized cell lines. Our results demonstrate that primary HAE and model cells elicit a robust induction of type I and III interferons (IFNs). Importantly, we show for the first time that melanoma differentiation associated gene (MDA)-5 is the main sensor of SARS-CoV-2 in lung cells. IFN exposure strongly inhibited viral replication and de novo production of infectious virions. However, despite high levels of IFNs produced in response to SARS-CoV-2 infection, the IFN response was unable to control viral replication in lung cells, contrary to what was previously reported in intestinal epithelial cells. Altogether, these results highlight the complex and ambiguous interplay between viral replication and the timing of IFN responses.IMPORTANCE Mammalian cells express sensors able to detect specific features of pathogens and induce the interferon response, which is one of the first line of defenses against viruses and help controlling viral replication. The mechanisms and impact of SARS-CoV-2 sensing in lung epithelial cells remained to be deciphered. In this study, we report that despite a high production of type I and III interferons specifically induced by MDA-5-mediated sensing of SARS-CoV-2, primary and immortalized lung epithelial cells are unable to control viral replication. However, exogenous interferons potently inhibited replication, if provided early upon viral exposure. A better understanding of the ambiguous interplay between the interferon response and SARS-CoV-2 replication is essential to guide future therapeutical interventions.

10.
mBio ; 11(4)2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753493

RESUMEN

The blood-brain barrier (BBB) largely prevents toxins and pathogens from accessing the brain. Some viruses have the ability to cross this barrier and replicate in the central nervous system (CNS). Zika virus (ZIKV) was responsible in 2015 to 2016 for a major epidemic in South America and was associated in some cases with neurological impairments. Here, we characterized some of the mechanisms behind its neuroinvasion using an innovative in vitro human BBB model. ZIKV efficiently replicated, was released on the BBB parenchyma side, and triggered subtle modulation of BBB integrity as well as an upregulation of inflammatory and cell adhesion molecules (CAMs), which in turn favored leukocyte recruitment. Finally, we showed that ZIKV-infected mouse models displayed similar CAM upregulation and that soluble CAMs were increased in plasma samples from ZIKV-infected patients. Our observations suggest a complex interplay between ZIKV and the BBB, which may trigger local inflammation, leukocyte recruitment, and possible cerebral vasculature impairment.IMPORTANCE Zika virus (ZIKV) can be associated with neurological impairment in children and adults. To reach the central nervous system, viruses have to cross the blood-brain barrier (BBB), a multicellular system allowing a tight separation between the bloodstream and the brain. Here, we show that ZIKV infects cells of the BBB and triggers a subtle change in its permeability. Moreover, ZIKV infection leads to the production of inflammatory molecules known to modulate BBB integrity and participate in immune cell attraction. The virus also led to the upregulation of cellular adhesion molecules (CAMs), which in turn favored immune cell binding to the BBB and potentially increased infiltration into the brain. These results were also observed in a mouse model of ZIKV infection. Furthermore, plasma samples from ZIKV-infected patients displayed an increase in CAMs, suggesting that this mechanism could be involved in neuroinflammation triggered by ZIKV.


Asunto(s)
Barrera Hematoencefálica/inmunología , Moléculas de Adhesión Celular/genética , Inflamación/virología , Leucocitos/inmunología , Infección por el Virus Zika/inmunología , Animales , Encéfalo/inmunología , Encéfalo/virología , Adhesión Celular/genética , Células Cultivadas , Chlorocebus aethiops , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas , Humanos , Ratones , Regulación hacia Arriba , Células Vero , Virus Zika , Infección por el Virus Zika/patología
11.
Proc Natl Acad Sci U S A ; 117(24): 13708-13718, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482853

RESUMEN

The Q fever agent Coxiella burnetii uses a defect in organelle trafficking/intracellular multiplication (Dot/Icm) type 4b secretion system (T4SS) to silence the host innate immune response during infection. By investigating C. burnetii effector proteins containing eukaryotic-like domains, here we identify NopA (nucleolar protein A), which displays four regulator of chromosome condensation (RCC) repeats, homologous to those found in the eukaryotic Ras-related nuclear protein (Ran) guanine nucleotide exchange factor (GEF) RCC1. Accordingly, NopA is found associated with the chromatin nuclear fraction of cells and uses the RCC-like domain to interact with Ran. Interestingly, NopA triggers an accumulation of Ran-GTP, which accumulates at nucleoli of transfected or infected cells, thus perturbing the nuclear import of transcription factors of the innate immune signaling pathway. Accordingly, qRT-PCR analysis on a panel of cytokines shows that cells exposed to the C. burnetii nopA::Tn or a Dot/Icm-defective dotA::Tn mutant strain present a functional innate immune response, as opposed to cells exposed to wild-type C. burnetii or the corresponding nopA complemented strain. Thus, NopA is an important regulator of the innate immune response allowing Coxiella to behave as a stealth pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coxiella burnetii/metabolismo , Fiebre Q/inmunología , Animales , Proteínas Bacterianas/genética , Coxiella burnetii/genética , Femenino , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Fiebre Q/genética , Fiebre Q/microbiología
12.
Viruses ; 12(6)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545337

RESUMEN

Death domain-associated protein 6 (Daxx) is a multifunctional, ubiquitously expressed and highly conserved chaperone protein involved in numerous cellular processes, including apoptosis, transcriptional repression, and carcinogenesis. In 2015, we identified Daxx as an antiretroviral factor that interfered with HIV-1 replication by inhibiting the reverse transcription step. In the present study, we sought to unravel the molecular mechanism of Daxx-mediated restriction and, in particular, to identify the protein(s) that Daxx targets in order to achieve its antiviral activity. First, we show that the SUMO-interacting motif (SIM) located at the C-terminus of the protein is strictly required for Daxx to inhibit HIV-1 reverse transcription. By performing a quantitative proteomic screen combined with classical biochemical analyses, we found that Daxx associated with incoming HIV-1 cores through a SIM-dependent interaction with cyclophilin A (CypA) and capsid (CA). Daxx was found to reside within a multiprotein complex associated with viral capsids, also containing TNPO3, TRIM5α, and TRIM34. Given the well-known influence of these cellular factors on the stability of HIV-1 cores, we investigated the effect of Daxx on the cytoplasmic fate of incoming cores and found that Daxx prevented HIV-1 uncoating in a SIM-dependent manner. Altogether, our findings suggest that, by recruiting TNPO3, TRIM5α, and TRIM34 and possibly other proteins onto incoming HIV-1 cores through a SIM-dependent interaction with CA-bound CypA, Daxx increases their stability, thus preventing uncoating and reverse transcription. Our study uncovers a previously unknown function of Daxx in the early steps of HIV-1 infection and further illustrates how reverse transcription and uncoating are two tightly interdependent processes.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Infecciones por VIH/metabolismo , VIH-1/genética , Chaperonas Moleculares/metabolismo , Proteína SUMO-1/metabolismo , Desencapsidación Viral , Secuencias de Aminoácidos , Cápside/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas Co-Represoras/química , Proteínas Co-Represoras/genética , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Transcripción Reversa , Proteína SUMO-1/genética , beta Carioferinas/genética , beta Carioferinas/metabolismo
15.
Sci Adv ; 5(11): eaax3511, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31799391

RESUMEN

Plasmacytoid dendritic cells (pDCs) play a crucial role in antiviral innate immunity through their unique capacity to produce large amounts of type I interferons (IFNs) upon viral detection. Tripartite motif (TRIM) proteins have recently come forth as important modulators of innate signaling, but their involvement in pDCs has not been investigated. Here, we performed a rationally streamlined small interfering RNA (siRNA)-based screen of TRIM proteins in human primary pDCs to identify those that are critical for the IFN response. Among candidate hits, TRIM8 emerged as an essential regulator of IFN regulatory factor 7 (IRF7) function. Mechanistically, TRIM8 protects phosphorylated IRF7 (pIRF7) from proteasomal degradation in an E3 ubiquitin ligase-independent manner by preventing its recognition by the peptidyl-prolyl isomerase Pin1. Our findings uncover a previously unknown regulatory mechanism of type I IFN production in pDCs by which TRIM8 and Pin1 oppositely regulate the stability of pIRF7.


Asunto(s)
Proteínas Portadoras/metabolismo , Virus Chikungunya/inmunología , Células Dendríticas/inmunología , VIH-1/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Interferón Tipo I/inmunología , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular , Células HEK293 , Humanos , Inmunidad Innata/inmunología , Factor 7 Regulador del Interferón/metabolismo , Proteínas del Tejido Nervioso/genética , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra
17.
Commun Biol ; 1: 193, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30456314

RESUMEN

TRIM5α is a cytoplasmic restriction factor that blocks post-entry retroviral infection. Evidence suggests that its antiviral activity can be regulated by SUMO, but how this is achieved remains unknown. Here, we show that TRIM5α forms a complex with RanGAP1, Ubc9, and RanBP2 at the nuclear pore, and that RanBP2 E3 SUMO ligase promotes the SUMOylation of endogenous TRIM5α in the cytoplasm. Loss of RanBP2 blocked SUMOylation of TRIM5α, altered its localization in primary cells, and suppressed the antiviral activity of both rhesus and human orthologs. In cells, human TRIM5α is modified on K84 within a predicted phosphorylated SUMOylation motif (pSUM) and not on K10 as found in vitro. Non-modified TRIM5α lacked antiviral activity, indicating that only SUMOylated TRIM5α acts as a restriction factor. This work illustrates the importance of the nuclear pore in intrinsic antiviral immunity, acting as a hub where virus, SUMO machinery, and restriction factors can meet.

19.
Mol Cell Proteomics ; 17(6): 1196-1208, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29535160

RESUMEN

We report that interferon (IFN) α treatment at short and long periods increases the global cellular SUMOylation and requires the presence of the SUMO E3 ligase promyelocytic leukemia protein (PML), the organizer of PML nuclear bodies (NBs). Several PML isoforms (PMLI-PMLVII) derived from a single PML gene by alternative splicing, share the same N-terminal region but differ in their C-terminal sequences. Introducing each of the human PML isoform in PML-negative cells revealed that enhanced SUMOylation in response to IFN is orchestrated by PMLIII and PMLIV. Large-scale proteomics experiments enabled the identification of 558 SUMO sites on 389 proteins, of which 172 sites showed differential regulation upon IFNα stimulation, including K49 from UBC9, the sole SUMO E2 protein. Furthermore, IFNα induces PML-dependent UBC9 transfer to the nuclear matrix where it colocalizes with PML within the NBs and enhances cellular SUMOylation levels. Our results demonstrate that SUMOylated UBC9 and PML are key players for IFN-increased cellular SUMOylation.


Asunto(s)
Interferón-alfa/farmacología , Proteína de la Leucemia Promielocítica/metabolismo , Sumoilación/efectos de los fármacos , Células HEK293 , Humanos
20.
Sci Rep ; 8(1): 1277, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352251

RESUMEN

Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is a serine/threonine kinase that exerts its own phosphorylation and the phosphorylation of the α subunit of the protein synthesis initiation factor eIF-2α. PKR was identified as a target of SUMOylation and the triple PKR-SUMO deficient mutant on Lysine residues K60-K150-K440 has reduced PKR activity. We report that SUMO1 and SUMO3 expression exert differential effects on PKR localization, activation and stability. SUMO1 or SUMO3 did not alter the repartition of PKR in the cytoplasm and the nucleus. However, in SUMO3-expressing cells PKR was found more concentrated around the perinuclear membrane and was recruited from small speckles to nuclear dots. Interestingly, SUMO1 expression alone resulted in PKR and eIF-2α activation, whereas SUMO3 reduced PKR and eIF-2α activation upon viral infection or dsRNA transfection. In addition, encephalomyocarditis virus (EMCV) enhanced PKR conjugation to SUMO1 and SUMO3 but only SUMO3 expression promoted caspase-dependent EMCV-induced PKR degradation. Furthermore, the higher EMCV-induced PKR activation by SUMO1 was correlated with an inhibition of EMCV. Importantly SUMO1, by inducing PKR activation in the absence of viral infection, and SUMO3, by counteracting both PKR activation and stability upon viral infection, shed a new light on the differential effects of SUMO-modified PKR.


Asunto(s)
Proteína SUMO-1/metabolismo , Ubiquitinas/metabolismo , eIF-2 Quinasa/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Estabilidad de Enzimas , Células HeLa , Humanos , Fosforilación , Proteína SUMO-1/genética , Sumoilación , Ubiquitinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...