Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Nat Commun ; 15(1): 1705, 2024 Feb 24.
Article En | MEDLINE | ID: mdl-38402219

Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP. This effect was phenocopied by NAAA deletion and depended on PPAR-α recruitment. Mice lacking NAAA in CD11b+ cells - monocytes, macrophages, and neutrophils - were resistant to HP induction. Conversely, mice overexpressing NAAA or lacking PPAR-α in the same cells were constitutively primed. Depletion of monocytes, but not resident macrophages, generated mice that were refractory to HP. The results identify NAAA-regulated signaling in monocytes as a control node in the induction of HP and, potentially, the transition to pain chronicity.


Amidohydrolases , Monocytes , Humans , Enzyme Inhibitors/pharmacology , Hyperalgesia/genetics , Lipids , Pain , PPAR alpha , Animals , Mice
2.
Pharmacol Res ; 199: 107049, 2024 Jan.
Article En | MEDLINE | ID: mdl-38159785

Adolescent exposure to Δ9-tetrahydrocannabinol (THC) has enduring effects on energy metabolism and immune function. Prior work showed that daily administration of a low-impact dose of THC (5 mg/kg, intraperitoneal) during adolescence alters transcription in adult microglia and disrupts their response to bacterial endotoxin or social stress. To explore the lasting impact of adolescent THC exposure on the brain's reaction to viral infection, we administered THC (5 mg/kg, intraperitoneal) in male and female mice once daily on postnatal day (PND) 30-43. When the mice reached adulthood (PND 70), we challenged them with the viral mimic, polyinosinic acid:polycytidylic acid [Poly(I:C)], and assessed sickness behavior (motor activity, body temperature) and whole brain gene transcription. Poly(I:C) caused an elevation in body temperature which was lessened by prior THC exposure in female but not male mice. Adolescent THC exposure did not affect the locomotor response to Poly(I:C) in either sex. Transcriptomic analyses showed that Poly(I:C) produced a substantial upregulation of immune-related genes in the brain, which was decreased by THC in females. Additionally, the viral mimic caused a male-selective downregulation in transcription of genes involved in neurodevelopment and synaptic transmission, which was abrogated by adolescent THC treatment. The results indicate that Poly(I:C) produces complex transcriptional alterations in the mouse brain, which are sexually dimorphic and differentially affected by early-life THC exposure. In particular, adolescent THC dampens the brain's antiviral response to Poly(I:C) in female mice and prevents the transcriptional downregulation of neuron-related genes caused by the viral mimic in male mice.


Dronabinol , Virus Diseases , Animals , Mice , Male , Female , Dronabinol/pharmacology , Brain , Synaptic Transmission , Neurons
3.
Article En | MEDLINE | ID: mdl-37017699

BACKGROUND AND AIM: Post-traumatic stress disorder (PTSD), a chronic debilitating condition that affects nearly 5-10% of American adults, is treated with a handful of FDA-approved drugs that provide at best symptomatic relief and exert multiple side effects. Preclinical and clinical evidence shows that inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which deactivates the endocannabinoid anandamide, exhibit anxiolytic-like properties in animal models. In the present study, we investigated the effects of two novel brain-permeable FAAH inhibitors - the compounds ARN14633 and ARN14280 - in a rat model of predator stress-induced long-term anxiety used to study PTSD. METHODS: We exposed male Sprague-Dawley rats to 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a volatile constituent of fox feces, and assessed anxiety-like behaviors in the elevated plus maze (EPM) test seven days later. We measured FAAH activity using a radiometric assay and brain levels of FAAH substrates by liquid chromatography/tandem mass spectrometry. RESULTS: Rats challenged with TMT developed persistent (≥ 7 days) anxiety-like symptoms in the EPM test. Intraperitoneal administration of ARN14633 or ARN14280 1 h before testing suppressed TMT-induced anxiety-like behaviors with median effective doses (ED50) of 0.23 and 0.33 mg/kg, respectively. The effects were negatively correlated (ARN14663: R2 = 0.455; ARN14280: R2 = 0.655) with the inhibition of brain FAAH activity and were accompanied by increases in brain FAAH substrate levels. CONCLUSIONS: The results support the hypothesis that FAAH-regulated lipid signaling serves important regulatory functions in the response to stress and confirm that FAAH inhibitors may be useful for the management of PTSD.

4.
Exp Neurol ; 357: 114194, 2022 11.
Article En | MEDLINE | ID: mdl-35932800

The intracellular lipid amidases, fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA), terminate the actions of anandamide and palmitoylethanolamide (PEA), two antinociceptive and anti-inflammatory lipid-derived mediators. Here we show, confirming prior research, that small-molecule inhibitors of peripheral FAAH (compound URB937) and systemic NAAA (compound ARN19702) individually attenuate, in male CD-1 mice, pain-related behaviors and paw inflammation in the formalin and carrageenan tests. More importantly, isobolographic analyses revealed that the combination of URB937 and ARN19702 produced substantial synergistic (greater than additive) antinociceptive effects in both models as well as additive anti-inflammatory effects in the carrageenan test. Together, the findings uncover a functional interplay between FAAH and NAAA substrates in the control of nociception, which might be exploited clinically to develop safe and effective pain management strategies.


Amidohydrolases , Anti-Inflammatory Agents , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Carrageenan , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Male , Mice
5.
Pharmacology ; 107(7-8): 423-432, 2022.
Article En | MEDLINE | ID: mdl-35691287

INTRODUCTION: Previous work suggests the existence of a paracrine signaling mechanism in which histamine released from visceral mast cells into the portal circulation contributes to fasting-induced ketogenesis by stimulating biosynthesis of the endogenous high-affinity PPAR-α agonist oleoylethanolamide (OEA). METHODS: Male C57Bl/6J mice were rendered obese by exposure to a high-fat diet (HFD; 60% fat). We measured histamine, OEA, and other fatty-acid ethanolamides by liquid-chromatography/mass spectrometry, gene transcription by RT-PCR, protein expression by ELISA, neutral lipid accumulation in the liver using Red Oil O and BODIPY staining, and collagen levels using picrosirius red staining. RESULTS: Long-term exposure to HFD suppressed both fasting-induced histamine release into portal blood and histamine-dependent OEA production in the liver. Additionally, subchronic OEA administration reduced lipid accumulation, inflammatory responses, and fibrosis in the liver of HFD-exposed mice. DISCUSSION: The results suggest that disruption of histamine-dependent OEA signaling in the liver might contribute to pathology in obesity-associated liver steatosis.


Histamine , PPAR alpha , Animals , Diet, High-Fat/adverse effects , Endocannabinoids/metabolism , Histamine/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Oleic Acids , PPAR alpha/genetics
6.
Biol Psychiatry ; 92(11): 845-860, 2022 12 01.
Article En | MEDLINE | ID: mdl-35750512

BACKGROUND: During adolescence, microglia are actively involved in neocortical maturation while concomitantly undergoing profound phenotypic changes. Because the teenage years are also a time of experimentation with cannabis, we evaluated whether adolescent exposure to the drug's psychotropic constituent, Δ9-tetrahydrocannabinol (THC), might persistently alter microglia function. METHODS: We administered THC (5 mg/kg, intraperitoneal) once daily to male and female mice from postnatal day (PND) 30 to PND44 and examined the transcriptome of purified microglia in adult animals (PND70 and PND120) under baseline conditions or following either of two interventions known to recruit microglia: lipopolysaccharide injection and repeated social defeat. We used high-dimensional mass cytometry by time-of-flight to map brain immune cell populations after lipopolysaccharide challenge. RESULTS: Adolescent THC exposure produced in mice of both sexes a state of microglial dyshomeostasis that persisted until young adulthood (PND70) but receded with further aging (PND120). Key features of this state included broad alterations in genes involved in microglia homeostasis and innate immunity along with marked impairments in the responses to lipopolysaccharide- and repeated social defeat-induced psychosocial stress. The endocannabinoid system was also dysfunctional. The effects of THC were prevented by coadministration of either a global CB1 receptor inverse agonist or a peripheral CB1 neutral antagonist and were not replicated when THC was administered in young adulthood (PND70-84). CONCLUSIONS: Daily low-intensity CB1 receptor activation by THC during adolescence may disable critical functions served by microglia until young adulthood with potentially wide-ranging consequences for brain and mental health.


Dronabinol , Microglia , Animals , Female , Male , Mice , Dronabinol/pharmacology , Lipopolysaccharides/pharmacology , Gonadal Steroid Hormones , Stress, Psychological , Homeostasis
7.
Annu Rev Pharmacol Toxicol ; 62: 483-507, 2022 01 06.
Article En | MEDLINE | ID: mdl-34516291

The endocannabinoids are lipid-derived messengers that play a diversity of regulatory roles in mammalian physiology. Dysfunctions in their activity have been implicated in various disease conditions, attracting attention to the endocannabinoid system as a possible source of therapeutic drugs. This signaling complex has three components: the endogenous ligands, anandamide and 2-arachidonoyl-sn-glycerol (2-AG); a set of enzymes and transporters that generate, eliminate, or modify such ligands; and selective cell surface receptors that mediate their biological actions. We provide an overview of endocannabinoid formation, deactivation, and biotransformation and outline the properties and therapeutic potential of pharmacological agents that interfere with those processes. We describe small-molecule inhibitors that target endocannabinoid-producing enzymes, carrier proteins that transport the endocannabinoids into cells, and intracellular endocannabinoid-metabolizing enzymes. We briefly discuss selected agents that simultaneous-ly interfere with components of the endocannabinoid system and with other functionally related signaling pathways.


Endocannabinoids , Mammals , Animals , Endocannabinoids/metabolism , Humans , Mammals/metabolism
8.
Eur Neuropsychopharmacol ; 53: 19-24, 2021 12.
Article En | MEDLINE | ID: mdl-34358818

Early-life exposure to Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating constituent of cannabis, may produce enduring neurochemical changes in brain structures involved in the regulation of sociality but it is still unclear how such changes influence social behavior later in life. In the present study, we exposed male mice to moderate daily doses of Δ9-THC (5 mg/kg, intraperitoneal) during adolescence (postnatal day, PND, 30 to 43) and, when animals reached adulthood (PND70), we assessed their performance in the three-chamber social interaction task before and 3 weeks after injection of the chemical irritant formalin (1 % vol, intraplantar), which produces both immediate and persistent pain-related behaviors in mice. Prior Δ9-THC treatment did not alter social interaction in control adult mice but disrupted it in animals that developed lasting sensory abnormalities following formalin injection. The findings suggest that frequent exposure to Δ9-THC during adolescence causes in male mice a dormant dysfunction in social behavior which can be unmasked in adulthood when the animals experience an aversive state.


Dronabinol , Hallucinogens , Animals , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Formaldehyde/toxicity , Male , Mice , Pain/chemically induced
9.
J Pharmacol Exp Ther ; 378(3): 215-221, 2021 09.
Article En | MEDLINE | ID: mdl-34183435

Evidence suggests that Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating component of cannabis, causes enduring changes in the structure and function of adolescent brain circuits implicated in nociceptive responding. However, whether such changes might persistently disrupt nociceptive behaviors remains unknown. In the present study, we subjected C57BL6/J mice of both sexes to once-daily injections of Δ9-THC (5 mg-kg-1, i.p.) or vehicle throughout adolescence (PND 30-43) and, when the animals had reached adulthood (PND 70), assessed nociceptive behavior using the formalin and chronic constriction injury tests. We also investigated, using the tail immersion test, the antinociceptive effects of morphine and the development of tolerance to such effects. The results show that adolescent Δ9-THC exposure does not significantly impair nociceptive responding or morphine-related antinociception and tolerance. The findings suggest that frequent exposure to a moderate dose of Δ9-THC during adolescence does not permanently alter nociceptive circuits in male or female mice. SIGNIFICANCE STATEMENT: The endocannabinoid system serves critical functions in the central and peripheral nervous systems, including regulation of pain, and can be modified by prolonged exposure to the intoxicating constituent of cannabis, Δ9-tetrahydrocannabinol (Δ9-THC). This raises the possibility that regular use of Δ9-THC-containing cannabis during adolescence might cause changes in nociception that persist into adulthood. This study found that frequent early-life exposure to a moderate dose of Δ9-THC does not permanently alter nociceptive function in male or female mice.


Dronabinol , Animals , Drug Tolerance , Male , Mice , Nociception
10.
Pharmacol Res ; 167: 105545, 2021 05.
Article En | MEDLINE | ID: mdl-33722712

The use of products derived from hemp - i.e., cannabis varieties with low Δ9-tetrahydrocannabinol (Δ9-THC) content - as self-medication for pain and other health conditions is gaining in popularity but preclinical and clinical evidence for their effectiveness remains very limited. In the present study, we assessed the efficacy of a full-spectrum hemp oil extract (HOE; 10, 50 and 100 mg-kg-1; oral route), alone or in combination with the anti-inflammatory and analgesic agent palmitoylethanolamide (PEA; 10, 30, 100 and 300 mg-kg-1; oral route), in the formalin and chronic constriction injury (CCI) tests. We found that HOE exerts modest antinociceptive effects when administered alone, whereas the combination of sub-effective oral doses of HOE and PEA produces a substantial greater-than-additive alleviation of pain-related behaviors. Transcription of interleukin (IL)-6 and IL-10 increased significantly in lumbar spinal cord tissue on day 7 after CCI surgery, an effect that was attenuated to the same extent by HOE alone or by the HOE/PEA combination. Pharmacokinetic experiments show that co-administration of HOE enhances and prolongs systemic exposure to PEA. Collectively, our studies lend support to possible beneficial effects of using HOE in combination with PEA to treat acute and chronic pain.


Acute Pain/drug therapy , Amides/therapeutic use , Analgesics/therapeutic use , Chronic Pain/drug therapy , Ethanolamines/therapeutic use , Palmitic Acids/therapeutic use , Plant Extracts/therapeutic use , Animals , Cannabis , Disease Models, Animal , Drug Synergism , Male , Mice
11.
Front Neurol ; 11: 505995, 2020.
Article En | MEDLINE | ID: mdl-33329293

Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.

12.
Cannabis Cannabinoid Res ; 5(2): 121-131, 2020 Jun 01.
Article En | MEDLINE | ID: mdl-32656344

Background: The possibility of cannabidiol (CBD) to be used as an antiviral or to treat viral diseases has received limited attention so far, despite the growing number of claims that CBD could be used for the treatment of viral infection-related conditions. Aim and Methods: Therefore, we systematically retrieved and critically evaluated the scientific literature available on PubMed and the claims on the Internet, to assess the current state of knowledge on the use of CBD in viral diseases, and to provide suggestions for future research directions. Results: PubMed search referenced two original articles supporting the use of CBD for the treatment of hepatitis C and Kaposi sarcoma and one article reporting the ability of CBD to reduce neuroinflammation in a virus-induced animal model of multiple sclerosis. Internet search found 25 websites claiming more indications for CBD. Remarkably, those claims were provided mostly by commercial websites and were not supported by appropriate scientific references. Conclusion: Although preclinical studies suggest the potential effectiveness of CBD in viral diseases such as hepatitis C and Kaposi sarcoma, clinical evidence is still lacking. Anecdotal experiences of CBD use retrieved on the Internet, on the other side, lack any support from sound scientific evidence, although they might in some cases provide suggestions for conditions associated with viral infections that may deserve proper assessment in well-designed clinical trials.

13.
Int J Mol Sci ; 20(8)2019 Apr 13.
Article En | MEDLINE | ID: mdl-31013912

Cannabis and cannabinoids offer significant therapeutic benefits for a wide scope of pathological conditions. Among them, the clinical issues rooted in inflammation stand out, nonetheless, the underlying mechanisms are not yet plainly understood. Circumstantial evidence points to polymorphonuclear leukocytes (PMN) as targets for the anti-inflammatory effects of cannabis. Therefore, we conducted this study to assess the effects of CM5, a novel Cannabis sativa L. extract standardized in 5% cannabidiol (CBD), on human PMN functions, including cell migration, oxidative metabolism and production of tumour necrosis factor (TNF)-α. We then sought to investigate whether such effects could be ascribed to its content in CBD. Cell migration was assessed by the Boyden chamber assay, oxidative metabolism by means of spectrofluorimetric measurement of reactive oxygen species (ROS) production, and TNF-α was measured by real time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Results show that both CM5 and CBD inhibit PMN migration, ROS and TNF-α production, indicating that CBD may be the main item responsible for the effects of CM5. CM5 is however more potent than CBD on cell migration and TNF-α production, and less effective on ROS production, suggesting that beyond CBD, other components of the cannabis plant may contribute to the biological effects of the extract. As a whole, such results support the use of cannabis standardized extract and CBD to stem inflammation; however, they also warrant in-depth investigation of the underlying cellular and molecular mechanisms to better exploit their therapeutic potential.


Cannabidiol/pharmacology , Cannabis/chemistry , Neutrophils/drug effects , Plant Extracts/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cannabidiol/chemistry , Chemotaxis, Leukocyte/drug effects , Cytokines/metabolism , Humans , Inflammation Mediators/metabolism , Molecular Structure , Neutrophils/immunology , Neutrophils/metabolism , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism
14.
AIDS Behav ; 23(8): 2088-2100, 2019 Aug.
Article En | MEDLINE | ID: mdl-30607756

People living with HIV (PLHIV) in Cameroon often seek care from traditional health practitioners (THPs) and use medicinal plants (MP). Most MP, however, still lacks evidence for their efficacy and safety, and their use, often undisclosed to referring physicians, may interfere with standard therapies. Therefore, we conducted a survey of 247 PLHIV in Dschang to assess the determinants, prevalence and trend of MP use. Besides, we surveyed 16 THPs about the use of MP in PLHIV and HIV-related knowledge. 54.9% PLHIV declared using in total 70 plants, 91.3% users were satisfied with MP, and unwanted effects were reported in 2 cases. MP users were less educated than nonusers, had longer disease duration and were more often unemployed. Only 3 THPs used MP in PLHIV, and most of them had insufficient knowledge of HIV. Results may be useful for education on HIV and integration of traditional medicines with conventional therapeutics.


HIV Infections/therapy , Phytotherapy , Plant Preparations/therapeutic use , Plants, Medicinal , Adult , Cameroon/epidemiology , Cross-Sectional Studies , Ethnobotany , Female , HIV Infections/epidemiology , Humans , Male , Middle Aged , Plant Structures , Prevalence , Surveys and Questionnaires
15.
J Ethnopharmacol ; 220: 94-116, 2018 Jun 28.
Article En | MEDLINE | ID: mdl-29596999

ETHNOPHARMACOLOGICAL RELEVANCE: Tithonia diversifolia (TD) is widely valued in several cultures for its medicinal properties. A comprehensive review of the current understanding of this plant species is required due to emerging concerns over its efficacy, toxicity and allergenic potential. AIM OF THE REVIEW: We critically summarized the current evidence on the botany, traditional use, phytochemistry, pharmacology and safety of TD, with the view to provide perspectives for developing more attractive pharmaceuticals of plant origin, but also to lay a new foundation for further investigations on this plant. MATERIALS AND METHODS: A preliminary consultation of search engines such as Web of Science, PubMed, ScienceDirect and other published/unpublished resources provided an overview of extant literature on TD. Then, we meticulously screened all titles, abstracts and full-texts to establish consistency in the application of inclusion criteria. Studies were considered for inclusion if they dealt with taxonomy, global distribution, local and traditional knowledge, phytochemistry, toxicity and biological effects. RESULTS: 1856 articles were retrieved among which 168 were revised and included. Several studies conducted on cell lines and animals provided supporting evidence for some ethnomedicinal claims of extracts from TD. Short-term use of Tithonia extracts were effective and well-tolerated in animals when taken at lower doses. Both the toxic and therapeutic effects were attributed to bioactive principles naturally occurring in this species including sesquiterpene lactones, chlorogenic acid and flavonoids. CONCLUSIONS: T. diversifolia is a valuable source of bioactive compounds with significant therapeutic implications and favourable safety index. However, more rigorously designed investigations are needed to recommend the whole plant or its active ingredients as a medication, and should focus on understanding the multi-target network pharmacology of the plant, clarifying the effective doses as well as identifying the potential interactions with prescribed drugs or other chemicals.


Asteraceae/chemistry , Medicine, Traditional , Plant Extracts/pharmacology , Animals , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/pharmacology , Dose-Response Relationship, Drug , Ethnopharmacology , Flavonoids/isolation & purification , Flavonoids/pharmacology , Humans , Lactones/isolation & purification , Lactones/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/toxicity , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology
...