Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521729

RESUMEN

In bridge structures worldwide, carbon fiber-reinforced polymer (CFRP) sheets are applied to strengthen weak components, especially concrete girders that are at a high risk of rapid degradation during the bridge's operation owing to impacts from the superstructure's weight and traffic loads. Regarding the thermography-based method (TM), although deteriorations in the concrete core are some of the main defects in concrete structures strengthened with CFRP, these do not receive as much attention as damage in the CFRP. Therefore, the interpretation of the structural health in terms of these defects using TM is still unclear. The problem presented in this work addresses the quantification of delamination inside the concrete part of a specimen with a CFRP sheet installed on the surface (assumed to be the girder surface strengthened with CFRP) via step heating thermography. Additionally, the empirical thermal diffusivity of concrete girders strengthened with a CFRP sheet (CSC girder), has not been provided previously, is proposed in the present study to predict delamination depths used for field investigations. Moreover, the effect of the CFRP sheet installed on the structure's surface on the absolute contrast of delamination is clarified. Finally, advanced post-processing algorithms, i.e., thermal signal reconstruction and pulsed phase thermography, are applied to images obtained with step heating thermography to enhance the visibility of delamination in CSC girders.

2.
Materials (Basel) ; 12(23)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810200

RESUMEN

In bridge structures, concrete decks have a higher risk of damage than other components owing to the direct impact of traffic. This study aims to develop a comprehensive system for bridge inspection using passive infrared thermography (IRT). Experiments were conducted on a concrete specimen (assumed as the surface of the bridge deck) embedded artificial delaminations with different width-to-depth ratios (WTDRs). Both professional handheld IR camera (H-IRC) and a UAV mounted with an IR camera (UAV-IRC) were employed simultaneously to capture the surface temperature of the structure. The present work indicates that the passive IRT technique with an H-IRC can be used to detect delaminations located at depths of 4 cm or less from the structure surface if the WTDRs are not lesser than 1.9 for daytime and 2.5 for nighttime when testing on a sunny day. In addition, the larger the WTDR, the higher the temperature difference can be produced, thus delaminations could be observed more clearly. Furthermore, our study suggests that the concrete bridge deck inspection using passive IRT can produce appropriate results if the inspection is performed from 10:00 to 15:00 or from 19:30 to approximately 2:00 on a sunny day. Good agreement between the results obtained from tests using H-IRC and UAV-IRC was observed, which validates the application of UAV-IRC in real structure inspection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...