Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838244

RESUMEN

The good phytotoxicity and selectivity against weeds versus tomato or cress make saponin-rich fractions from Agave macroacantha, A. colorata, A. parryi, and A. parrasana attractive candidates as bioherbicides. The saponin contents have only previously been reported for A. macroacantha, and as a consequence, simultaneous dereplication has been performed on saponin-rich fractions from the other plants by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. This strategy enables the identification of a total of 26 saponins, 14 of which have been described previously and 12 of which are proposed as new saponins. They include isomers and a new sugar chain with a ß-d-apiofuranose unit. The method is corroborated by the isolation of eight dereplicated saponins from A. colorata.

2.
J Agric Food Chem ; 72(3): 1797-1810, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206382

RESUMEN

The phytotoxicities of a selection of eudesmanolides and guaianolides, including natural products and new derivatives obtained by semisynthesis from plant-isolated sesquiterpene lactones, were evaluated in bioassays against three weeds of concern in agriculture (Amaranthus viridis L., Echinochloa crus-galli L., and Lolium perenne L.). Both eudesmanolides and guaianolides were active against the root and shoot growth of all the species, with the eudesmanolides generally showing improved activities. The IC50 values obtained for the herbicide employed as positive control (on root and shoot growth, respectively, A. viridis: 27.8 and 85.7 µM; E. crus-galli: 167.5 and 288.2 µM; L. perenne: 99.1 and 571.4 µM) were improved in most of the cases. Structure-activity relationships were discussed, finding that hydroxylation of the A-ring and C-13 as well as the position, number, and orientation of the hydroxyl groups and the presence of an unsaturated carbonyl group can significantly influence the level of phytotoxicity. γ-Cyclocostunolide was the most active compound in the series, followed by others such as dehydrozaluzanin C and α-cyclocostunolide (outstanding their IC50 values on A. viridis)─natural products that can therefore be suggested as models for herbicide development if further research indicates effectiveness on a larger scale and environmental safety in ecotoxicological assessments.


Asunto(s)
Amaranthus , Echinochloa , Herbicidas , Lolium , Sesquiterpenos , Malezas
3.
Toxins (Basel) ; 15(11)2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37999495

RESUMEN

Sesquiterpene lactones (SLs), plant-derived metabolites with broad spectra of biological effects, including anti-tumor and anti-inflammatory, hold promise for drug development. Primary cilia, organelles extending from cell surfaces, are crucial for sensing and transducing extracellular signals essential for cell differentiation and proliferation. Their life cycle is linked to the cell cycle, as cilia assemble in non-dividing cells of G0/G1 phases and disassemble before entering mitosis. Abnormalities in both primary cilia (non-motile cilia) and motile cilia structure or function are associated with developmental disorders (ciliopathies), heart disease, and cancer. However, the impact of SLs on primary cilia remains unknown. This study evaluated the effects of selected SLs (grosheimin, costunolide, and three cyclocostunolides) on primary cilia biogenesis and stability in human retinal pigment epithelial (RPE) cells. Confocal fluorescence microscopy was employed to analyze the effects on primary cilia formation (ciliogenesis), primary cilia length, and stability. The effects on cell proliferation were evaluated by flow cytometry. All SLs disrupted primary cilia formation in the early stages of ciliogenesis, irrespective of starvation conditions or cytochalasin-D treatment, with no effect on cilia length or cell cycle progression. Interestingly, grosheimin stabilized and promoted primary cilia formation under cilia homeostasis and elongation treatment conditions. Thus, SLs have potential as novel drugs for ciliopathies and tumor treatment.


Asunto(s)
Ciliopatías , Neoplasias , Humanos , Cilios/metabolismo , Cilios/patología , Neoplasias/metabolismo , Ciliopatías/metabolismo , Ciliopatías/patología , Lactonas/farmacología , Lactonas/metabolismo
4.
Phytochemistry ; 215: 113838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37648046

RESUMEN

Six different furanocoumarins were isolated from the aerial parts of Ducrosia anethifolia and tested in vitro for plant cell elongation in etiolated wheat coleoptile. They were also tested for their ability to control three different weeds: ribwort plantain, annual ryegrass, and common purslane. These compounds exhibited strong inhibition of plant cell elongation. In the case of (+)-heraclenin, the IC50 was lower than 20 µM, indicating a better inhibition than the positive control Logran®. Computational experiments for docking and molecular dynamics revealed for the investigated furanocoumarins bearing an epoxide moiety an improved fitting and stronger interaction with the auxin-like TIR1 ubiquitin ligase. Furthermore, the formed inhibition complex remained also stable during dynamic evaluation. Bidental interaction at the active site, along with an extended hydrogen-bond lifetime, explained the enhanced activity of the epoxides. The in vitro weed bioassay results showed that Plantago lanceolata was the most affected weed for germination, root, and shoot development. In addition, (+)-heraclenin displayed better inhibition values than positive control even at 300 µM concentration.


Asunto(s)
Apiaceae , Fabaceae , Furocumarinas , Oryza , Oryza/química , Productos Agrícolas , Extractos Vegetales/farmacología , Verduras , Malezas
5.
Toxins (Basel) ; 15(5)2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37235382

RESUMEN

Naphthoquinones are a valuable source of secondary metabolites that are well known for their dye properties since ancient times. A wide range of biological activities have been described highlighting their cytotoxic activity, gaining the attention of researchers in recent years. In addition, it is also worth mentioning that many anticancer drugs possess a naphthoquinone backbone in their structure. Considering this background, the work described herein reports the evaluation of the cytotoxicity of different acyl and alkyl derivatives from juglone and lawsone that showed the best activity results from a etiolated wheat coleoptile bioassay. This bioassay is rapid, highly sensitive to a wide spectrum of activities, and is a powerful tool for detecting biologically active natural products. A preliminary cell viability bioassay was performed on cervix carcinoma (HeLa) cells for 24 h. The most promising compounds were further tested for apoptosis on different tumoral (IGROV-1 and SK-MEL-28) and non-tumoral (HEK-293) cell lines by flow cytometry. Results reveal that derivatives from lawsone (particularly derivative 4) were more cytotoxic on tumoral than in non-tumoral cells, showing similar results to those obtained with of etoposide, which is used as a positive control for apoptotic cell death. These findings encourage further studies on the development of new anticancer drugs for more directed therapies and reduced side effects with naphthoquinone skeleton.


Asunto(s)
Antineoplásicos , Naftoquinonas , Femenino , Humanos , Células HEK293 , Naftoquinonas/farmacología , Naftoquinonas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Etopósido , Línea Celular Tumoral
6.
Org Biomol Chem ; 21(15): 3214-3225, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36988070

RESUMEN

Parasitic weeds are noxious plants that damage crops of economic relevance, especially in Mediterranean and African countries. The strategy of suicidal germination was proposed to deal with this plague by using seed germination inducers that work as a pre-emergence herbicide and reduce the parasitic seed load before sowing. N-Substituted phthalimides with a furanone ring were found to be efficient in inducing the germination of Phelipanche ramosa and Orobanche cumana, two of the most problematic parasitic weeds of crops. However, the solubility of these compounds in water is low. A strategy for enhancing their aqueous solubility is the synthesis of host-guest complexes with cyclodextrins. Three bioactive phthalimide-lactones (PL01, PL04, and PL07) were selected and studied to form complexes of increased water solubility with α-, ß-, HP-ß-, and γ-cyclodextrin. The complexes obtained by the coprecipitation method, with increased aqueous solubility (up to 3.8 times), were studied for their bioactivity and they showed similar or slightly higher bioactivity than free phthalimide-lactones, even without the addition of organic solvents. A theoretical study using semiempirical calculations of molecular models including a solvation system confirmed the physicochemical empirical results. These results demonstrated that cyclodextrins can be used to improve the physicochemical and biological properties of parasitic seed germination inducers.


Asunto(s)
Ciclodextrinas , Malezas , Humanos , Lactonas/química , Ftalimidas , Agricultura
7.
Pest Manag Sci ; 79(4): 1547-1556, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36527369

RESUMEN

BACKGROUND: The resistance of weeds to herbicides is a significant issue in ensuring future food supply. Specific examples are Plantago lanceolata, Portulaca oleracea and Lolium rigidum, which mainly infect rice, wheat, barley and pastures, and cause high yield losses every year. In this regard, natural products and their mimics have provided new hope as a result of their different modes-of-action, activity at low concentrations and reduced pollution effects relative to conventional herbicides. However, the poor water solubility and physicochemical properties of these compounds limit their broad application. These problems can be addressed by formulation techniques, and encapsulation appears to be of great interest. RESULTS: Disulfide herbicides inspired by aminophenoxazinones have been formulated with 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD), γ-CD and polymeric nanoparticles (NPs). In silico studies were employed to identify which complexes would be generated and complex formation was confirmed by nuclear magnetic resonance spectroscopy. Solubility diagrams were generated to assess any improvement in water solubility, which was enhanced 2-13-fold. Scanning electron microscopy and energy-dispersive X-ray spectra confirmed the success of the formulation process for the nanoparticles. Formulated compounds were evaluated in an in vitro wheat coleoptile bioassay, with almost 100% elongation inhibition achieved using only water for the bioassay. Specific in vitro testing on weed phytotoxicity showed that the application of core/shell NPs is highly effective in the fight against P. lanceolata seed germination. CONCLUSIONS: The formulation of disulfide herbicides with CD complexes and NPs led to an enhancement in water solubility and bioactivity. These systems can be applied in pre-emergent mode against P. lanceolata, using only water to prepare the sample, and they showed better activity than the positive controls. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Ciclodextrinas , Herbicidas , Nanopartículas , 2-Hidroxipropil-beta-Ciclodextrina/química , Herbicidas/farmacología , Solubilidad , Triticum/crecimiento & desarrollo , Agua , Simulación por Computador
8.
J Agric Food Chem ; 71(1): 480-487, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36548787

RESUMEN

Aqueous solubility and stability often limit the application of aminophenoxazinones and their sulfur mimics as promising agrochemicals in a sustainable agriculture inspired by allelopathy. This paper presents a solution to the problem using host-guest complexation with cucurbiturils (CBn). Computational studies show that CB7 is the most suitably sized homologue due to its strong affinity for guest molecules and its high water solubility. Complex formation has been studied by direct titrations monitored using UV-vis spectroscopy, finding a preferential interaction with protonated aminophenoxazinone species with high binding affinities (CB7·APOH+, Ka = (1.85 ± 0.37) × 106 M-1; CB7·DiS-NH3+, Ka = (3.91 ± 0.53) × 104 M-1; and DiS-(NH3+)2, Ka= (1.27 ± 0.42) × 105 M-1). NMR characterization and stability analysis were also performed and revealed an interesting pKa modulation and stabilization by cucurbiturils (2-amino-3H-phenoxazin-3-one (APO), pKa = 2.94 ± 0.30, and CB7·APO, pKa = 4.12 ± 0.15; 2,2'-disulfanediyldianiline (DiS-NH2), pKa = 2.14 ± 0.09, and CB7·DiS-NH2, pKa = 3.26 ± 0.09), thus favoring applications in different kinds of crop soils. Kinetic studies have demonstrated the stability of the CB7·APO complex at different pH media for more than 90 min. An in vitro bioassay with etiolated wheat coleoptiles showed that the bioactivity of APO and DiS-NH2 is enhanced upon complexation.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Triticum , Hidrocarburos Aromáticos con Puentes/farmacología , Hidrocarburos Aromáticos con Puentes/química , Cinética , Disulfuros , Espectroscopía de Resonancia Magnética
9.
Plants (Basel) ; 11(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501417

RESUMEN

Plant growth-stimulation bioactivity of triterpenoid saponins is well known, especially for oleanane-type compounds. Nevertheless, a few phytotoxicity bioassays performed on some steroidal saponins have shown hormesis profiles and growth stimulation on Lactuca sativa roots. The focus of the work described here was on the use of the wheat coleoptile bioassay to evaluate plant growth stimulation, and on the search for a commercially available source of active saponins by bio-guided fractionation strategy. Selected saponins were tested and a cluster analysis showed that those saponins with a sugar chain of more than five units had a hormesis profile, while saponins with growth enhancement had fewer sugar residues. Two saponins showed similar activity to the positive control, namely the phytohormone indole-3-butyric acid (IBA). As a potential source of these metabolites, a commercial extract of Yucca schidigera used as a fertilizer was selected. Bio-guided fractionation led to the identification of two fractions of defined composition and these showed stimulation values similar to the positive control. It was observed that the presence of a carbonyl group at C-12 on the aglycone skeleton led to improved activity. A saponin-rich fraction from Y. schidigera could be proposed to enhance crop quality and production.

10.
Toxins (Basel) ; 14(9)2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36136537

RESUMEN

In the work described here, a number of sesquiterpenes and benzoxazinoids from natural sources, along with their easily accessible derivatives, were evaluated against the main protease, RNA replicase and spike glycoprotein of SARS-CoV-2 by molecular docking. These natural products and their derivatives have previously shown remarkable antiviral activities. The most relevant compounds were the 4-fluoro derivatives of santamarine, reynosin and 2-amino-3H-phenoxazin-3-one in terms of the docking score. Those compounds fulfill the Lipinski's rule, so they were selected for the analysis by molecular dynamics, and the kinetic stabilities of the complexes were assessed. The addition of the 4-fluorobenzoate fragment to the natural products enhances their potential against all of the proteins tested, and the complex stability after 50 ns validates the inhibition calculated. The derivatives prepared from reynosin and 2-amino-3H-phenoxazin-3-one are able to generate more hydrogen bonds with the Mpro, thus enhancing the stability of the protein-ligand and generating a long-term complex for inhibition. The 4-fluoro derivate of santamarine and reynosin shows to be really active against the spike protein, with the RMSD site fluctuation lower than 1.5 Å. Stabilization is mainly achieved by the hydrogen-bond interactions, and the stabilization is improved by the 4-fluorobenzoate fragment being added. Those compounds tested in silico reach as candidates from natural sources to fight this virus, and the results concluded that the addition of the 4-fluorobenzoate fragment to the natural products enhances their inhibition potential against the main protease, RNA replicase and spike protein of SARS-CoV-2.


Asunto(s)
Productos Biológicos , COVID-19 , Sesquiterpenos , Antivirales/química , Antivirales/farmacología , Benzoatos , Benzoxazinas/farmacología , Productos Biológicos/farmacología , Proteasas 3C de Coronavirus , Humanos , Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
11.
Pest Manag Sci ; 78(10): 4240-4251, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35709310

RESUMEN

BACKGROUND: Natural products are a promising source for the development of new pesticides with alternative mechanisms of action. In this study, we evaluated the phytotoxic and antifungal activity of a novel family of natural C17 -sesquiterpenoids and performed a study of the effect caused by the elimination of the α-methylene-γ-butyrolactone system and its importance to their biological activity. RESULTS: Many tested compounds exhibited a strong phytotoxic activity. Lappalone and pertyolide B were the most potent molecules from the tested group. Lappalone displayed a strong inhibition profile against selected weed species, reaching a half-maximal inhibitory concentration (IC50 ) value of 5.0 µm against Echinochloa crus-galli L. shoot and 5.7 µm against the germination rate of Amaranthus viridis L., as well as a good stimulation of the germination of Phelipanche ramosa L. Pertyolide B demonstrated excellent inhibition against Amaranthus viridis L. (IC50 : 56.7, 70.3 and 24.0 µm against the root and shoot growth, and germination rate, respectively) and Allium cepa L. (representative of the Liliaceae family, with IC50 values of 25.3 and 64.4 µm against root and shoot growth). Regarding the antifungal activity, pertyolide B presented significant activity against Colletotrichum fragareae and Fusarium oxysporum with a minimum inhibitory concentration of 6.6 µg µL-1 . CONCLUSION: The bioassays revealed that frequently the presence of the α-methylene-γ-butyrolactone system is not essential for the bioactivities of sesquiterpene lactones, and suggest that C17 -sesquiterpenoids may function through a different mechanism of action not related to the widely assumed Michael addition. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Alcaloides , Amaranthus , Echinochloa , Sesquiterpenos , Alcaloides/farmacología , Antifúngicos/farmacología , Agentes de Control Biológico/farmacología , Sesquiterpenos/farmacología
12.
J Agric Food Chem ; 70(12): 3644-3653, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35289164

RESUMEN

The encapsulation of bioactive natural products has emerged as a relevant tool for modifying the poor physicochemical properties often exhibited by agrochemicals. In this regard, natural guaiane-type sesquiterpene lactones isolated from Cynara cardunculus L. have been encapsulated in a core/shell nanotube@agrochemical system. Monitoring of the F and O signals in marked sesquiterpenes confirmed that the compound is present in the nanotube cavity. These structures were characterized using scanning transmission electron microscopy-X-ray energy-dispersive spectrometry techniques, which revealed the spatial layout relationship and confirmed encapsulation of the sesquiterpene lactone derivative. In addition, biological studies were performed with aguerin B (1), cynaropicrin (2), and grosheimin (3) on the inhibition of germination, roots, and shoots in weeds (Phalaris arundinacea L., Lolium perenne L., and Portulaca oleracea L.). Encapsulation of lactones in nanotubes gives better results than those for the nonencapsulated compounds, thereby reinforcing the application of fully organic nanotubes for the sustainable use of agrochemicals in the future.


Asunto(s)
Cynara , Nanotubos , Cynara/química , Lactonas/química , Lactonas/toxicidad , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sesquiterpenos de Guayano
13.
Plant Cell Environ ; 45(2): 512-527, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34719040

RESUMEN

Nitrogen (N) and phosphorus (P) are among the most important macronutrients for plant growth and development, and the most widely used as fertilizers. Understanding how plants sense and respond to N and P deficiency is essential to optimize and reduce the use of chemical fertilizers. Strigolactones (SLs) are phytohormones acting as modulators and sensors of plant responses to P deficiency. In the present work, we assess the potential role of SLs in N starvation and in the N-P signalling interplay. Physiological, transcriptional and metabolic responses were analysed in wild-type and SL-deficient tomato plants grown under different P and N regimes, and in plants treated with a short-term pulse of the synthetic SL analogue 2'-epi-GR24. The results evidence that plants prioritize N over P status by affecting SL biosynthesis. We also show that SLs modulate the expression of key regulatory genes of phosphate and nitrate signalling pathways, including the N-P integrators PHO2 and NIGT1/HHO. The results support a key role for SLs as sensors during early plant responses to both N and phosphate starvation and mediating the N-P signalling interplay, indicating that SLs are involved in more physiological processes than so far proposed.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Nitrógeno/fisiología , Fósforo/fisiología , Transducción de Señal , Solanum lycopersicum/fisiología
14.
J Nat Prod ; 84(11): 2904-2913, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34670365

RESUMEN

A dereplication strategy using UPLC-QTOF/MSE, the HMAI method, and NMR spectroscopy led to the identification of five main steroidal saponins (1-5), including three previously unknown compounds named macroacanthosides A-C (3-5), in a bioactive fraction of Agave macroacantha. The major saponins were isolated, and some of them together with the saponin-rich fraction were then evaluated for phytotoxicity on a standard target species, Lactuca sativa. The inhibition values exhibited by the pure compounds were confirmed to be in agreement with the phytotoxicity of the saponin-rich fraction, which suggests that the saponin fraction could be applied successfully as an agrochemical without undergoing any further costly and/or time-consuming purification processes. The NMR data of the pure compounds as well as of those corresponding to the same compounds in the fraction were comparable, which indicated that the main saponins could be identified by means of this replication workflow and that no standards are required.


Asunto(s)
Agave/química , Saponinas/aislamiento & purificación , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Espectroscopía de Resonancia Magnética , Saponinas/química , Saponinas/toxicidad
15.
Molecules ; 26(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34500685

RESUMEN

Yucca is one of the main sources of steroidal saponins, hence different extracts are commercialized for use as surfactant additives by beverage, animal feed, cosmetics or agricultural products. For a deeper understanding of the potential of the saponins that can be found in this genus, an exhaustive review of the structural characteristics, bioactivities and analytical methods that can be used with these compounds has been carried out, since there are no recent reviews on the matter. Thus, a total of 108 saponins from eight species of the genus Yucca have been described. Out of these, the bioactivity of 68 saponins derived from the isolation of Yucca or other genera has been evaluated. Regarding the evaluation and quality control of the saponins from this genus LC-MS technique is the most often used. Nevertheless, the development of methods for their routine analysis in commercial preparations are needed. Moreover, most of the studies found in the literature have been carried out on Y. schidigera extract, since is the most often used for commercial purposes. Only eight of the 50 species that belong to this genus have been studied, which clearly indicates that the identification of saponins present in Yucca genus is still an unresolved question.


Asunto(s)
Saponinas/química , Yucca/química , Glicósidos/química
16.
J Nat Prod ; 84(8): 2295-2302, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34369759

RESUMEN

C17-sesquiterpenoids are a group of natural products that have been recently discovered. These compounds have the peculiarity of lacking the α,ß-methylene butyrolactone system, which is known to be quite relevant for many of the biological activities reported for sesquiterpene lactones. Unfortunately, the biological interest of C17-sesquiterpenoids has not been studied in-depth, mainly due to the poor isolation yields in which they can be obtained from natural sources. Therefore, in order to allow a deeper study of these novel molecules, we have worked out a synthetic pathway that provides C17-sesquiterpenoids in enough quantities from easily accessible sesquiterpene lactones to enable a more thorough investigation of their bioactivities. With this synthesis method, we have successfully synthesized, for the first time, three natural C17-sesquiterpenoids, pertyolides A, B, and C, with good overall yields. Furthermore, we have also evaluated their phytotoxicity against etiolated wheat coleoptiles and corroborated that pertyolides B and C present strong phytotoxic activity.


Asunto(s)
Herbicidas/síntesis química , Sesquiterpenos/toxicidad , Triticum/efectos de los fármacos , Inula/química , Estructura Molecular , Raíces de Plantas/química , Sesquiterpenos/síntesis química
17.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361785

RESUMEN

Even today, weeds continue to be a considerable problem for agriculture. The application of synthetic herbicides produces serious environmental consequences, and crops suffer loss of their activity due to the appearance of new resistant weed biotypes. Our aim is to develop new effective natural herbicides that improve the problem of resistance and do not harm the environment. This work is focused on a bioassay-guided isolation and the characterization of natural products present in Moquiniastrum pulchrum leaves with phytotoxic activity and its preliminary application in weeds. Moquiniastrum pulchrum was selected for two reasons: it is an abundant species in the Cerrado region (the second most important ecosystem in Brazil, after the Amazon)-the explanation behind its being a dominant species is a major focus of interest-and it has traditional employment in folk medicine. Six major compounds were isolated in this plant: one flavone and five diterpenes, two of which are described for the first time in the literature. Four of the six compounds exhibited phytotoxic activity in the bioassays performed. The results confirmed the phytotoxic potential of this plant, which had not been investigated until now.


Asunto(s)
Asteraceae/química , Agentes de Control Biológico/toxicidad , Diterpenos/toxicidad , Flavonas/toxicidad , Herbicidas/toxicidad , Malezas/efectos de los fármacos , Control de Malezas/métodos , Bioensayo , Agentes de Control Biológico/química , Agentes de Control Biológico/aislamiento & purificación , Productos Agrícolas/crecimiento & desarrollo , Diterpenos/química , Diterpenos/aislamiento & purificación , Flavonas/química , Flavonas/aislamiento & purificación , Herbicidas/química , Herbicidas/aislamiento & purificación , Humanos , Estructura Molecular , Extractos Vegetales/química , Hojas de la Planta/química , Malezas/crecimiento & desarrollo
18.
J Agric Food Chem ; 69(31): 8684-8694, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34328733

RESUMEN

Piptocarpha rotundifolia (Less.) Baker stands out as one of the species with the highest frequency, density, and relative dominance in the Cerrado formations. However, no phytochemical studies have been carried out with this species to date. The aim of this study was to evaluate the phytotoxic activity of P. rotundifolia leaves in the search of new environmentally friendly tools for weed control. Thus, a wheat coleoptile and phytotoxic bioassay, using relevant agricultural weeds, was used to identify the most active extracts and fractions. The subsequent purification process allowed the isolation of 11 compounds, the phytotoxicity of which was evaluated in terms of wheat coleoptile elongation and with the most sensitive weeds. Piptocarphin A was found to be the major compound and the most active. To confirm its phytotoxic potential, the effect on Ipomea grandifolia grown in a hydroponic culture and on metaxylem cells was studied. The results obtained in this study demonstrate that the inhibitory activity displayed by P. rotundifolia leaf extract is mainly due to the presence of piptocarphin A. The phytotoxicity shown by P. rotundifolia leaf extract, and the isolated compounds, on weeds could provide new tools for weed control in agricultural fields.


Asunto(s)
Asteraceae , Control de Malezas , Fitoquímicos , Extractos Vegetales/toxicidad , Malezas
19.
Molecules ; 26(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199500

RESUMEN

In the search of new alternatives for weed control, spices appear as an option with great potential. They are rich in bioactive natural products and edible, which might minimize toxicity hazard. Marjoram (Origanum majorana L.) is an aromatic herb that has been widely employed as a seasoning herb in Mediterranean countries. Although marjoram boasts a plethora of therapeutic properties (painkiller, antibiotic, treatment for intestinal disorders, etc.), the potential for its extracts for weed control is still to be more thoroughly explored. In order to determine their phytotoxic potential, marjoram leaves were subjected to different bioguided extraction processes, using water, ethyl acetate, acetone or methanol. The most active extract (acetone) was sequentially fractionated to identify its most active compounds. This fractionation led to the isolation and identification of 25 compounds that were classified as monoterpenes, diterpenes or flavonoids. Among them, a new compound named majoradiol and several compounds are described in marjoram for the first time. The phytotoxicity of the major compounds to etiolated wheat coleoptiles was compared against that of the commercial herbicide (Logran®), with similar or higher activity in some cases. These results confirm the extraordinary potential of the extracts from this edible plant to develop safer and more environmentally friendly herbicides.


Asunto(s)
Herbicidas/farmacología , Origanum/química , Fitoquímicos/farmacología , Fraccionamiento Químico , Flavonoides/química , Flavonoides/farmacología , Herbicidas/química , Región Mediterránea , Estructura Molecular , Fitoquímicos/química , Hojas de la Planta/química , Compuestos de Sulfonilurea/farmacología , Terpenos/química , Terpenos/farmacología , Control de Malezas
20.
Molecules ; 26(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200139

RESUMEN

Aminophenoxazinones are degradation products resulting from the metabolism of different plant species, which comprise a family of natural products well known for their pharmacological activities. This review provides an overview of the pharmacological properties and applications proved by these compounds and their structural derivatives during 2000-2021. The bibliography was selected according to our purpose from the references obtained in a SciFinder database search for the Phx-3 structure (the base molecule of the aminophenoxazinones). Compounds Phx-1 and Phx-3 are among the most studied, especially as anticancer drugs for the treatment of gastric and colon cancer, glioblastoma and melanoma, among others types of relevant cancers. The main information available in the literature about their mechanisms is also described. Similarly, antibacterial, antifungal, antiviral and antiparasitic activities are presented, including species related directly or indirectly to significant diseases. Therefore, we present diverse compounds based on aminophenoxazinones with high potential as drugs, considering their levels of activity and few adverse effects.


Asunto(s)
Productos Biológicos/farmacología , Oxazinas/farmacología , Animales , Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Antivirales/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...