Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86
1.
Blood Adv ; 8(8): 2032-2043, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38295282

ABSTRACT: Autophagy is an intracellular survival process that has established roles in the long-term survival and function of hematopoietic stem cells (HSC). We investigated the contribution of autophagy to HSC fitness during allogeneic transplantation and graft-versus-host disease (GVHD). We demonstrate in vitro that both tumor necrosis factor and IL-1ß, major components of GVHD cytokine storm, synergistically promote autophagy in both HSC and their more mature hematopoietic progenitor cells (HPC). In vivo we demonstrate that autophagy is increased in donor HSC and HPC during GVHD. Competitive transplant experiments demonstrated that autophagy-deficient cells display reduced capacity to reconstitute the hematopoietic system compared to wild-type counterparts. In a major histocompatibility complex-mismatched model of GVHD and associated cytokine dysregulation, we demonstrate that autophagy-deficient HSC and progenitors fail to establish durable hematopoiesis, leading to primary graft failure and universal transplant related mortality. Using several different models, we confirm that autophagy activity is increased in early progenitor and HSC populations in the presence of T-cell-derived inflammatory cytokines and that these HSC populations require autophagy to survive. Thus, autophagy serves as a key survival mechanism in HSC and progenitor populations after allogeneic stem cell transplant and may represent a therapeutic target to prevent graft failure during GVHD.


Autophagy , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Mice , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Disease Models, Animal , Transplantation, Homologous , Graft Rejection , Cytokines/metabolism
2.
Brain Behav Immun ; 117: 181-194, 2024 03.
Article En | MEDLINE | ID: mdl-38211634

Traumatic brain injury (TBI) results in prolonged and non-resolving activation of microglia. Forced turnover of these cells during the acute phase of TBI aids recovery, but the cell-intrinsic pathways that underpin the pro-repair phenotype of these repopulating microglia remain unclear. Here, we show that selective targeting of ROCK2 with the small molecule inhibitor KD025 impairs the proliferative response of microglia after TBI as well as during genetically induced turnover of microglia. KD025 treatment abolished the substantial neuroprotective and cognitive benefits conferred by repopulating microglia, preventing these cells from replenishing the depleted niche during the early critical time window post-injury. Delaying KD025 treatment to the subacute phase of TBI allowed microglial repopulation to occur, but this did not enhance the benefits conferred by repopulating microglia. Taken together, our data indicate that ROCK2 mediates neuronal survival and microglial population dynamics after TBI, including the emergence of repopulating microglia with a pro-repair phenotype.


Brain Injuries, Traumatic , Microglia , Humans , Cell Proliferation , Cell Survival , Hydrolases , rho-Associated Kinases
3.
Blood ; 143(10): 912-929, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38048572

ABSTRACT: Chronic graft-versus-host disease (cGVHD) remains a significant complication of allogeneic hematopoietic stem cell transplantation. Central nervous system (CNS) involvement is becoming increasingly recognized, in which brain-infiltrating donor major histocompatibility complex (MHC) class II+ bone marrow-derived macrophages (BMDM) drive pathology. BMDM are also mediators of cutaneous and pulmonary cGVHD, and clinical trials assessing the efficacy of antibody blockade of colony-stimulating factor 1 receptor (CSF1R) to deplete macrophages are promising. We hypothesized that CSF1R antibody blockade may also be a useful strategy to prevent/treat CNS cGVHD. Increased blood-brain barrier permeability during acute GVHD (aGVHD) facilitated CNS antibody access and microglia depletion by anti-CSF1R treatment. However, CSF1R blockade early after transplant unexpectedly exacerbated aGVHD neuroinflammation. In established cGVHD, vascular changes and anti-CSF1R efficacy were more limited. Anti-CSF1R-treated mice retained donor BMDM, activated microglia, CD8+ and CD4+ T cells, and local cytokine expression in the brain. These findings were recapitulated in GVHD recipients, in which CSF1R was conditionally depleted in donor CX3CR1+ BMDM. Notably, inhibition of CSF1R signaling after transplant failed to reverse GVHD-induced behavioral changes. Moreover, we observed aberrant behavior in non-GVHD control recipients administered anti-CSF1R blocking antibody and naïve mice lacking CSF1R in CX3CR1+ cells, revealing a novel role for homeostatic microglia and indicating that ongoing clinical trials of CSF1R inhibition should assess neurological adverse events in patients. In contrast, transfer of Ifngr-/- grafts could reduce MHC class II+ BMDM infiltration, resulting in improved neurocognitive function. Our findings highlight unexpected neurological immune toxicity during CSF1R blockade and provide alternative targets for the treatment of cGVHD within the CNS.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Mice , Animals , Neuroinflammatory Diseases , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , CD4-Positive T-Lymphocytes , Macrophages/pathology , Receptor Protein-Tyrosine Kinases , Receptors, Colony-Stimulating Factor
4.
Am J Transplant ; 23(8): 1102-1115, 2023 08.
Article En | MEDLINE | ID: mdl-36878433

Damage to the gastrointestinal tract following allogeneic hematopoietic stem cell transplantation is a significant contributor to the severity and perpetuation of graft-versus-host disease. In preclinical models and clinical trials, we showed that infusing high numbers of regulatory T cells reduces graft-versus-host disease incidence. Despite no change in in vitro suppressive function, transfer of ex vivo expanded regulatory T cells transduced to overexpress G protein-coupled receptor 15 or C-C motif chemokine receptor 9, specific homing receptors for colon or small intestine, respectively, lessened graft-versus-host disease severity in mice. Increased regulatory T cell frequency and retention within the gastrointestinal tissues of mice that received gut homing T cells correlated with lower inflammation and gut damage early post-transplant, decreased graft-versus-host disease severity, and prolonged survival compared with those receiving control transduced regulatory T cells. These data provide evidence that enforced targeting of ex vivo expanded regulatory T cells to the gastrointestinal tract diminishes gut injury and is associated with decreased graft-versus-host disease severity.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Mice , T-Lymphocytes, Regulatory , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Intestine, Small , Inflammation
5.
Blood Adv ; 7(17): 4886-4902, 2023 09 12.
Article En | MEDLINE | ID: mdl-36322878

Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.


Bronchiolitis Obliterans Syndrome , Graft vs Host Disease , Humans , Consensus , Precision Medicine , Graft vs Host Disease/therapy , Graft vs Host Disease/drug therapy , Biology
6.
Transplant Cell Ther ; 28(8): 426-445, 2022 08.
Article En | MEDLINE | ID: mdl-35662591

Alloreactive and autoimmune responses after allogeneic hematopoietic cell transplantation can occur in nonclassical chronic graft-versus-host disease (chronic GVHD) tissues and organ systems or manifest in atypical ways in classical organs commonly affected by chronic GVHD. The National Institutes of Health (NIH) consensus projects were developed to improve understanding and classification of the clinical features and diagnostic criteria for chronic GVHD. Although still speculative whether atypical manifestations are entirely due to chronic GVHD, these manifestations remain poorly captured by the current NIH consensus project criteria. Examples include chronic GVHD impacting the hematopoietic system as immune mediated cytopenias, endothelial dysfunction, or as atypical features in the musculoskeletal system, central and peripheral nervous system, kidneys, and serous membranes. These purported chronic GVHD features may contribute significantly to patient morbidity and mortality. Most of the atypical chronic GVHD features have received little study, particularly within multi-institutional and prospective studies, limiting our understanding of their frequency, pathogenesis, and relation to chronic GVHD. This NIH consensus project task force report provides an update on what is known and not known about the atypical manifestations of chronic GVHD while outlining a research framework for future studies to be undertaken within the next 3 to 7 years. We also provide provisional diagnostic criteria for each atypical manifestation, along with practical investigation strategies for clinicians managing patients with atypical chronic GVHD features.


Graft vs Host Disease , Chronic Disease , Consensus , Graft vs Host Disease/diagnosis , Humans , National Institutes of Health (U.S.) , Prospective Studies , United States
7.
Dis Model Mech ; 15(4)2022 04 01.
Article En | MEDLINE | ID: mdl-35169835

Resident and recruited macrophages control the development and proliferation of the liver. We have previously shown in multiple species that treatment with a macrophage colony stimulating factor (CSF1)-Fc fusion protein initiated hepatocyte proliferation and promoted repair in models of acute hepatic injury in mice. Here, we investigated the impact of CSF1-Fc on resolution of advanced fibrosis and liver regeneration, using a non-resolving toxin-induced model of chronic liver injury and fibrosis in C57BL/6J mice. Co-administration of CSF1-Fc with exposure to thioacetamide (TAA) exacerbated inflammation consistent with monocyte contributions to initiation of pathology. After removal of TAA, either acute or chronic CSF1-Fc treatment promoted liver growth, prevented progression and promoted resolution of fibrosis. Acute CSF1-Fc treatment was also anti-fibrotic and pro-regenerative in a model of partial hepatectomy in mice with established fibrosis. The beneficial impacts of CSF1-Fc treatment were associated with monocyte-macrophage recruitment and increased expression of remodelling enzymes and growth factors. These studies indicate that CSF1-dependent macrophages contribute to both initiation and resolution of fibrotic injury and that CSF1-Fc has therapeutic potential in human liver disease.


Liver Diseases , Macrophage Colony-Stimulating Factor , Animals , Fibrosis , Liver/metabolism , Liver Diseases/pathology , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/metabolism , Mice , Mice, Inbred C57BL
8.
Blood ; 139(19): 2983-2997, 2022 05 12.
Article En | MEDLINE | ID: mdl-35226736

Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells. Using conditional EZH2 knockout donor cells, we demonstrated that EZH2 is obligatory for the initiation of cGVHD/BO. In a sclerodermatous cGVHD model, JQ5 reduced the severity of cutaneous lesions. To determine how the 2 drugs could lead to the same physiological improvements while targeting unique epigenetic processes, we analyzed the transcriptomes of splenic GCB cells (GCBs) from transplanted mice treated with either drug. Multiple inflammatory and signaling pathways enriched in cGVHD/BO GCBs were reduced by each drug. GCBs from JQ5- but not JQ1-treated mice were enriched for proproliferative pathways also seen in GCBs from bone marrow-only transplanted mice, likely reflecting their underlying biology in the unperturbed state. In conjunction with in vivo data, these insights led us to conclude that epigenetic targeting of the GC is a viable clinical approach for the treatment of cGVHD, and that the EZH2 inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 demonstrated clinical potential for EZH2i and BETi in patients with cGVHD/BO.


Bronchiolitis Obliterans , Enhancer of Zeste Homolog 2 Protein , Germinal Center , Graft vs Host Disease , Proteins , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Bronchiolitis Obliterans/genetics , Bronchiolitis Obliterans/metabolism , Bronchiolitis Obliterans/pathology , Chronic Disease , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enzyme Inhibitors/pharmacology , Germinal Center/drug effects , Germinal Center/pathology , Graft vs Host Disease/drug therapy , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Humans , Mice , Proteins/metabolism , Transcriptome
9.
Blood ; 139(9): 1389-1408, 2022 03 03.
Article En | MEDLINE | ID: mdl-34570880

Graft-versus-host disease (GVHD) remains the leading cause of nonrelapse mortality after allogeneic stem cell transplantation for hematological malignancies. Manifestations of GVHD in the central nervous system (CNS) present as neurocognitive dysfunction in up to 60% of patients; however, the mechanisms driving chronic GVHD (cGVHD) in the CNS are yet to be elucidated. Our studies of murine cGVHD revealed behavioral deficits associated with broad neuroinflammation and persistent Ifng upregulation. By flow cytometry, we observed a proportional shift in the donor-derived T-cell population in the cGVHD brain from early CD8 dominance to later CD4 sequestration. RNA sequencing of the hippocampus identified perturbations to structural and functional synapse-related gene expression, together with the upregulation of genes associated with interferon-γ responses and antigen presentation. Neuroinflammation in the cortex of mice and humans during acute GVHD was recently shown to be mediated by resident microglia-derived tumor necrosis factor. In contrast, infiltration of proinflammatory major histocompatibility complex (MHC) class II+ donor bone marrow (BM)-derived macrophages (BMDMs) was identified as a distinguishing feature of CNS cGVHD. Donor BMDMs, which composed up to 50% of the CNS myeloid population, exhibited a transcriptional signature distinct from resident microglia. Recipients of MHC class II knockout BM grafts exhibited attenuated neuroinflammation and behavior comparable to controls, suggestive of a critical role of donor BMDM MHC class II expression in CNS cGVHD. Our identification of disease mediators distinct from those in the acute phase indicates the necessity to pursue alternative therapeutic targets for late-stage neurological manifestations.


Bone Marrow Transplantation , Graft vs Host Disease/immunology , Histocompatibility Antigens Class II/immunology , Macrophages/immunology , Neuroinflammatory Diseases/immunology , Animals , Chronic Disease , Female , Mice
10.
JHEP Rep ; 4(1): 100386, 2022 Jan.
Article En | MEDLINE | ID: mdl-34917911

BACKGROUND & AIMS: Fibrosis, the primary cause of morbidity in chronic liver disease, is induced by pro-inflammatory cytokines, immune cell infiltrates, and tissue resident cells that drive excessive myofibroblast activation, collagen production, and tissue scarring. Rho-associated kinase 2 (ROCK2) regulates key pro-fibrotic pathways involved in both inflammatory reactions and altered extracellular matrix remodelling, implicating this pathway as a potential therapeutic target. METHODS: We used the thioacetamide-induced liver fibrosis model to examine the efficacy of administration of the selective ROCK2 inhibitor KD025 to prevent or treat liver fibrosis and its impact on immune composition and function. RESULTS: Prophylactic and therapeutic administration of KD025 effectively attenuated thioacetamide-induced liver fibrosis and promoted fibrotic regression. KD025 treatment inhibited liver macrophage tumour necrosis factor production and disrupted the macrophage niche within fibrotic septae. ROCK2 targeting in vitro directly regulated macrophage function through disruption of signal transducer and activator of transcription 3 (STAT3)/cofilin signalling pathways leading to the inhibition of pro-inflammatory cytokine production and macrophage migration. In vivo, KDO25 administration significantly reduced STAT3 phosphorylation and cofilin levels in the liver. Additionally, livers exhibited robust downregulation of immune cell infiltrates and diminished levels of retinoic acid receptor-related orphan receptor gamma (RORγt) and B-cell lymphoma 6 (Bcl6) transcription factors that correlated with a significant reduction in liver IL-17, splenic germinal centre numbers and serum IgG. CONCLUSIONS: As IL-17 and IgG-Fc binding promote pathogenic macrophage differentiation, together our data demonstrate that ROCK2 inhibition prevents and reverses liver fibrosis through direct and indirect effects on macrophage function and highlight the therapeutic potential of ROCK2 inhibition in liver fibrosis. LAY SUMMARY: By using a clinic-ready small-molecule inhibitor, we demonstrate that selective ROCK2 inhibition prevents and reverses hepatic fibrosis through its pleiotropic effects on pro-inflammatory immune cell function. We show that ROCK2 mediates increased IL-17 production, antibody production, and macrophage dysregulation, which together drive fibrogenesis in a model of chemical-induced liver fibrosis. Therefore, in this study, we not only highlight the therapeutic potential of ROCK2 targeting in chronic liver disease but also provide previously undocumented insights into our understanding of cellular and molecular pathways driving the liver fibrosis pathology.

11.
Front Cell Dev Biol ; 9: 737880, 2021.
Article En | MEDLINE | ID: mdl-34631716

Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.

12.
Transplant Cell Ther ; 27(9): 729-737, 2021 09.
Article En | MEDLINE | ID: mdl-34147469

Positive results from recent clinical trials have significantly expanded current therapeutic options for patients with chronic graft-versus-host disease (GVHD). However, new insights into the associations between clinical characteristics of chronic GVHD, pathophysiologic mechanisms of disease, and the clinical and biological effects of novel therapeutic agents are required to allow for a more individualized approach to treatment. The current report is focused on setting research priorities and direction in the treatment of chronic GVHD. Detailed correlative scientific studies should be conducted in the context of clinical trials to evaluate associations between clinical outcomes and the biological effect of systemic therapeutics. For patients who require systemic therapy but not urgent initiation of glucocorticoids, clinical trials for initial systemic treatment of chronic GVHD should investigate novel agents as monotherapy without concurrently starting glucocorticoids, to avoid confounding biological, pathological, and clinical assessments. Clinical trials for treatment-refractory disease should specifically target patients with incomplete or suboptimal responses to most recent therapy who are early in their disease course. Close collaboration between academic medical centers, medical societies, and industry is needed to support an individualized, biology-based strategic approach to chronic GVHD therapy.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Chronic Disease , Clinical Trials as Topic , Consensus , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , National Institutes of Health (U.S.) , United States
13.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Article En | MEDLINE | ID: mdl-33811809

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


COVID-19/complications , Cardiotonic Agents/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Heart Diseases/drug therapy , Quinazolinones/therapeutic use , Transcription Factors/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Line , Cytokines/metabolism , Female , Heart Diseases/etiology , Human Embryonic Stem Cells , Humans , Inflammation/complications , Inflammation/drug therapy , Mice , Mice, Inbred C57BL , Transcription Factors/metabolism , COVID-19 Drug Treatment
14.
Cancer Immunol Res ; 8(8): 1085-1098, 2020 08.
Article En | MEDLINE | ID: mdl-32444423

The adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) is known to facilitate caspase-1 activation, which is essential for innate host immunity via the formation of the inflammasome complex, a multiprotein structure responsible for processing IL1ß and IL18 into their active moieties. Here, we demonstrated that ASC-deficient CD8+ T cells failed to induce severe graft-versus-host disease (GVHD) and had impaired capacity for graft rejection and graft-versus-leukemia (GVL) activity. These effects were inflammasome independent because GVHD lethality was not altered in recipients of caspase-1/11-deficient T cells. We also demonstrated that ASC deficiency resulted in a decrease in cytolytic function, with a reduction in granzyme B secretion and CD107a expression by CD8+ T cells. Altogether, our findings highlight that ASC represents an attractive therapeutic target for improving outcomes of clinical transplantation.


Bone Marrow Transplantation/adverse effects , CARD Signaling Adaptor Proteins/metabolism , CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Inflammasomes/immunology , Leukemia/therapy , T-Lymphocytes, Cytotoxic/immunology , Animals , Apoptosis , Caspase 1/metabolism , Disease Models, Animal , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Inflammasomes/metabolism , Leukemia/immunology , Leukemia/pathology , Mice , Mice, Inbred BALB C
15.
Cell ; 180(5): 833-846.e16, 2020 03 05.
Article En | MEDLINE | ID: mdl-32142677

Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.


Brain Injuries, Traumatic/therapy , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Regeneration/genetics , Animals , Brain/growth & development , Brain/pathology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/therapy , Disease Models, Animal , Humans , Inflammation/genetics , Inflammation/pathology , Mice , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/therapeutic use , Signal Transduction/genetics
16.
Blood Adv ; 3(19): 2859-2865, 2019 10 08.
Article En | MEDLINE | ID: mdl-31585949

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has recently emerged as an important pathogenic cytokine in acute graft-versus-host disease (GVHD), but the nature of the T-cell lineages secreting the cytokine and the mechanisms of action are less clear. Here we used interleukin 17A-fate reporter systems with transcriptional analysis and assays of alloantigen presentation to interrogate the origins of GM-CSF-secreting T cells and the effects of the cytokine on antigen-presenting cell (APC) function after experimental allogeneic stem cell transplantation (SCT). We demonstrated that although GM-CSF-secreting Th17 and non-Th17 cells expanded in the colon over time after SCT, the Th17 lineage expanded to represent 10% to 20% of the GM-CSF secreting T cells at this site by 4 weeks. Donor T-cell-derived GM-CSF expanded alloantigen-presenting donor dendritic cells (DCs) in the colon and lymph nodes. In the mesenteric lymph nodes, GM-CSF-dependent DCs primed donor T cells and amplified acute GVHD in the colon. We thus describe a feed-forward cascade whereby GM-CSF-secreting donor T cells accumulate and drive alloantigen presentation in the colon to amplify GVHD severity. GM-CSF inhibition may be a tractable clinical intervention to limit donor alloantigen presentation and GVHD in the lower gastrointestinal tract.


Dendritic Cells/immunology , Gastrointestinal Tract/immunology , Gene Expression/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Isoantigens/immunology , T-Lymphocytes/metabolism , Animals , Female , Humans , Male , Mice
18.
Lab Invest ; 99(2): 231-243, 2019 02.
Article En | MEDLINE | ID: mdl-30401957

Hepatic fibrosis is the central cause of chronic clinical pathology resulting from infection by the blood flukes Schistosoma japonicum or S. mansoni. Much has been elucidated regarding the molecular, cellular and immunological responses that correspond to the formation of the granulomatous response to trapped schistosome eggs. A central feature of this Th2 response is the deposition of collagen around the periphery of the granuloma. To date, traditional histology and transcriptional methods have been used to quantify the deposition of collagen and to monitor the formation of the hepatic granuloma during experimental animal models of schistosomiasis. We have investigated the dynamic nature of granuloma formation through the use of a transgenic mouse model (B6.Collagen 1(A) luciferase mice (B6.Coll 1A-luc+)). With this model and whole-animal bioluminescence imaging, we followed the deposition of collagen during an active schistosome infection with Chinese and Philippines geographical strains of S. japonicum and after clearance of the adult parasites by the drug praziquantel. Individual mice were re-imaged over the time course to provide robust real-time quantitation of the development of chronic fibrotic disease. This model provides an improved method to follow the course of hepatic schistosomiasis-induced hepatic pathology and effectively supports the current dogma of the formation of hepatic fibrosis, originally elucidated from static traditional histology. This study demonstrates the first use of the B6.Coll 1A-luc+ mouse to monitor the dynamics of disease development and the treatment of pathogen-induced infection with the underlying pathology of fibrosis.


Collagen/metabolism , Liver Cirrhosis/metabolism , Schistosomiasis/metabolism , Animals , Collagen/genetics , Disease Models, Animal , Female , Histocytochemistry , Liver/diagnostic imaging , Liver/metabolism , Liver/parasitology , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/parasitology , Luciferases/genetics , Luciferases/metabolism , Male , Mice , Mice, Transgenic , Optical Imaging , Schistosoma japonicum , Schistosomiasis/complications , Schistosomiasis/diagnostic imaging , Schistosomiasis/parasitology
19.
Blood ; 132(16): 1675-1688, 2018 10 18.
Article En | MEDLINE | ID: mdl-30154111

Autologous stem cell transplantation (SCT) remains a standard of care for multiple myeloma (MM) patients and prolongs progression-free survival. A small cohort of patients achieve long-term control of disease, but the majority of patients ultimately relapse, and the mechanisms permitting disease progression remain unclear. In this study, we used a preclinical model of autologous SCT for myeloma where the disease either progressed (MM relapsed) or was controlled. In the bone marrow (BM), inhibitory receptor expression on CD8+ T cells correlated strongly with myeloma progression after transplant. In conjunction, the costimulatory/adhesion receptor CD226 (DNAM-1) was markedly downregulated. Interestingly, DNAM-1- CD8+ T cells in MM-relapsed mice had an exhausted phenotype, characterized by upregulation of multiple inhibitory receptors, including T-cell immunoglobulin and ITIM domains (TIGIT) and programmed cell death protein 1 (PD-1) with decreased T-bet and increased eomesodermin expression. Immune checkpoint blockade using monoclonal antibodies against PD-1 or TIGIT significantly prolonged myeloma control after SCT. Furthermore, CD8+ T cells from MM-relapsed mice exhibited high interleukin-10 (IL-10) secretion that was associated with increased TIGIT and PD-1 expression. However, while donor-derived IL-10 inhibited myeloma control post-SCT, this was independent of IL-10 secretion by or signaling to T cells. Instead, the donor myeloid compartment, including colony-stimulating factor 1 receptor-dependent macrophages and an IL-10-secreting dendritic cell population in the BM, promoted myeloma progression. Our findings highlight PD-1 or TIGIT blockade in conjunction with SCT as a potent combination therapy in the treatment of myeloma.


Antibodies, Monoclonal/pharmacology , Antigens, Differentiation, T-Lymphocyte/metabolism , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/physiology , Multiple Myeloma/prevention & control , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Immunologic/antagonists & inhibitors , Animals , Antigens, Differentiation, T-Lymphocyte/genetics , Cells, Cultured , Hematopoietic Stem Cell Transplantation/adverse effects , Mice , Mice, Knockout , Multiple Myeloma/etiology , Multiple Myeloma/pathology , Programmed Cell Death 1 Receptor/immunology , Receptors, Immunologic/immunology
20.
Blood ; 131(24): 2651-2660, 2018 06 14.
Article En | MEDLINE | ID: mdl-29728401

Current approaches to prevent and treat graft-versus-host disease (GVHD) after stem cell transplantation rely principally on pharmacological immune suppression. Such approaches are limited by drug toxicity, nonspecific immune suppression, and a requirement for long-term therapy. Our increased understanding of the regulatory cells and molecular pathways involved in limiting pathogenic immune responses opens the opportunity for the use of these cell subsets to prevent and/or GVHD. The theoretical advantages of this approach is permanency of effect, potential for facilitating tissue repair, and induction of tolerance that obviates a need for ongoing drug therapy. To date, a number of potential cell subsets have been identified, including FoxP3+ regulatory T (Treg) and FoxP3negIL-10+ (FoxP3-negative) regulatory T (Tr1), natural killer (NK) and natural killer T (NKT) cells, innate lymphoid cells, and various myeloid suppressor populations of hematopoietic (eg, myeloid derived suppressor cells) and stromal origin (eg, mesenchymal stem cells). Despite initial technical challenges relating to large-scale selection and expansion, these regulatory lineages are now undergoing early phase clinical testing. To date, Treg therapies have shown promising results in preventing clinical GVHD when infused early after transplant. Results from ongoing studies over the next 5 years will delineate the most appropriate cell lineage, source (donor, host, third party), timing, and potential exogenous cytokine support needed to achieve the goal of clinical transplant tolerance.


Graft vs Host Disease/therapy , Stem Cell Transplantation/adverse effects , Adaptive Immunity , Adoptive Transfer/methods , Animals , Cell- and Tissue-Based Therapy/methods , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Humans , Immunity, Innate , Immunomodulation , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Lymphocyte Transfusion/methods , Lymphocytes/immunology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation
...