Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Clin Virol ; 171: 105620, 2024 04.
Article En | MEDLINE | ID: mdl-38237303

Simultaneously characterising the genomic information of coronaviruses and the underlying nasal microbiome from a single clinical sample would help characterise infection and disease. Metatranscriptomic approaches can be used to sequence SARS-CoV-2 (and other coronaviruses) and identify mRNAs associated with active transcription in the nasal microbiome. However, given the large sequence background, unenriched metatranscriptomic approaches often do not sequence SARS-CoV-2 to sufficient read and coverage depth to obtain a consensus genome, especially with moderate and low viral loads from clinical samples. In this study, various enrichment methods were assessed to detect SARS-CoV-2, identify lineages and define the nasal microbiome. The methods were underpinned by Oxford Nanopore long-read sequencing and variations of sequence independent single primer amplification (SISPA). The utility of the method(s) was also validated on samples from patients infected seasonal coronaviruses. The feasibility of profiling the nasal microbiome using these enrichment methods was explored. The findings shed light on the performance of different enrichment strategies and their applicability in characterising the composition of the nasal microbiome.


COVID-19 , Microbiota , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Genome, Viral , Microbiota/genetics , Nasopharynx
2.
Nat Commun ; 9(1): 2414, 2018 06 20.
Article En | MEDLINE | ID: mdl-29925843

Zika virus (ZIKV) infection of pregnant women can cause fetal microcephaly and other neurologic defects. We describe the development of a non-human primate model to better understand fetal pathogenesis. To reliably induce fetal infection at defined times, four pregnant rhesus macaques are inoculated intravenously and intraamniotically with ZIKV at gestational day (GD) 41, 50, 64, or 90, corresponding to first and second trimester of gestation. The GD41-inoculated animal, experiencing fetal death 7 days later, has high virus levels in fetal and placental tissues, implicating ZIKV as cause of death. The other three fetuses are carried to near term and euthanized; while none display gross microcephaly, all show ZIKV RNA in many tissues, especially in the brain, which exhibits calcifications and reduced neural precursor cells. Given that this model consistently recapitulates neurologic defects of human congenital Zika syndrome, it is highly relevant to unravel determinants of fetal neuropathogenesis and to explore interventions.


Disease Models, Animal , Fetal Diseases/pathology , Macaca mulatta , Nervous System Diseases/pathology , Pregnancy Complications, Infectious/pathology , Zika Virus Infection/pathology , Zika Virus/pathogenicity , Animals , Brain/pathology , Brain/virology , Female , Fetal Diseases/virology , Fetus/pathology , Fetus/virology , Humans , Male , Nervous System Diseases/virology , Pregnancy , Pregnancy Complications, Infectious/virology , RNA, Viral/isolation & purification , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/virology
3.
Microb Biotechnol ; 5(5): 588-93, 2012 Sep.
Article En | MEDLINE | ID: mdl-22925432

Despite substantial investments since the events of 2001, much work remains to prepare the nation for a chemical, biological, radiological or nuclear (CBRN) attack or to respond to an emerging infectious disease threat. Following a 2010 review of the US Public Health Emergency Medical Countermeasures Enterprise, FDA launched its Medical Countermeasures initiative (MCMi) to facilitate the development and availability of medical products to counter CBRN and emerging disease threats. As a regulatory agency, FDA has a unique and critical part to play in this national undertaking. Using a three-pillar approach, FDA is addressing key challenges associated with the regulatory review process for medical countermeasures; gaps in regulatory science for MCM development and evaluation; and issues related to the legal, regulatory and policy framework for an effective public health response. Filling the gaps in the MCM Enterprise is a huge national undertaking, requiring the collaboration of all stakeholders, including federal partners, current and prospective developers of medical countermeasures, relevant research organizations, and state and local responders. Especially critical to success are an appreciation of the long timelines, risks and high costs associated with developing medical countermeasures - and the systems to deliver them - and the requisite support of all stakeholders, including national leadership.


Civil Defense/methods , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/therapy , Disaster Planning/methods , Emergency Medicine/methods , Public Health/methods , Civil Defense/legislation & jurisprudence , Civil Defense/organization & administration , Civil Defense/trends , Communicable Diseases, Emerging/prevention & control , Disaster Planning/legislation & jurisprudence , Disaster Planning/organization & administration , Disaster Planning/trends , Emergency Medicine/legislation & jurisprudence , Emergency Medicine/organization & administration , Emergency Medicine/trends , Health Policy , Public Health/legislation & jurisprudence , Public Health/trends , United States
...