Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1358511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596668

RESUMEN

Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Patología Clínica , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Neoplasias Gástricas/genética , Herpesvirus Humano 4/fisiología , Pronóstico , Microambiente Tumoral
2.
J Virol ; 98(5): e0020724, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38639487

RESUMEN

To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.


Asunto(s)
Adenovirus Humanos , Genes Reporteros , Humanos , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/genética , Adenovirus Humanos/fisiología , Línea Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Carga Viral , Replicación Viral
3.
Trends Mol Med ; 29(1): 4-19, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36336610

RESUMEN

The consequences of human adenovirus (HAdV) infections are generally mild. However, despite the perception that HAdVs are harmless, infections can cause severe disease in certain individuals, including newborns, the immunocompromised, and those with pre-existing conditions, including respiratory or cardiac disease. In addition, HAdV outbreaks remain relatively common events and the recent emergence of more pathogenic genomic variants of various genotypes has been well documented. Coupled with evidence of zoonotic transmission, interspecies recombination, and the lack of approved AdV antivirals or widely available vaccines, HAdVs remain a threat to public health. At the same time, the detailed understanding of AdV biology garnered over nearly 7 decades of study has made this group of viruses a molecular workhorse for vaccine and gene therapy applications.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Infecciones del Sistema Respiratorio , Recién Nacido , Humanos , Adenoviridae/genética , Infecciones por Adenovirus Humanos/epidemiología , Adenovirus Humanos/genética , Genómica , Genotipo , Filogenia
4.
Tumour Virus Res ; 12: 200225, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34500123

RESUMEN

Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.


Asunto(s)
Adenovirus Humanos , Neoplasias , Adenoviridae/genética , Proteínas E1A de Adenovirus , Proteínas E1B de Adenovirus , Adenovirus Humanos/genética , Animales , Neoplasias/terapia
5.
Antiviral Res ; 188: 105034, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33577808

RESUMEN

Human adenoviruses (HAdV) are ubiquitous human pathogens that cause a significant burden of respiratory, ocular, and gastrointestinal illnesses. Although HAdV infections are generally self-limiting, pediatric and immunocompromised individuals are at particular risk for developing severe disease. Currently, no approved antiviral therapies specific to HAdV exist. Recent outbreaks underscore the need for effective antiviral agents to treat life-threatening infections. In this review we will focus on recent developments in search of potential therapeutic agents for controlling HAdV infections, with a focus on those targeting post-entry stages of the virus replicative cycle.


Asunto(s)
Infecciones por Adenovirus Humanos/tratamiento farmacológico , Adenovirus Humanos/efectos de los fármacos , Antivirales/uso terapéutico , Transporte Activo de Núcleo Celular/efectos de los fármacos , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/genética , Adenovirus Humanos/fisiología , Antivirales/farmacología , Replicación del ADN/efectos de los fármacos , Reposicionamiento de Medicamentos , Quimioterapia Combinada , Epigénesis Genética/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Inmunoterapia Adoptiva , Linfocitos T/inmunología , Replicación Viral/efectos de los fármacos
6.
Biology (Basel) ; 9(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718019

RESUMEN

One of the most conserved cellular pathways among eukaryotes is the extensively studied classical protein nuclear import pathway mediated by importin-α. Classical nuclear localization signals (cNLSs) are recognized by importin-α and are highly predictable due to their abundance of basic amino acids. However, various studies in model organisms have repeatedly demonstrated that only a fraction of nuclear proteins contain identifiable cNLSs, including those that directly interact with importin-α. Using data from the Human Protein Atlas and the Human Reference Interactome, and proteomic data from BioID/protein-proximity labeling studies using multiple human importin-α proteins, we determine that nearly 50% of the human nuclear proteome does not have a predictable cNLS. Surprisingly, between 25% and 50% of previously identified human importin-α cargoes do not have predictable cNLS. Analysis of importin-α cargo without a cNLS identified an alternative basic rich motif that does not resemble a cNLS. Furthermore, several previously suspected piggybacking proteins were identified, such as those belonging to the RNA polymerase II and transcription factor II D complexes. Additionally, many components of the mediator complex interact with at least one importin-α, yet do not have a predictable cNLS, suggesting that many of the subunits may enter the nucleus through an importin-α-dependent piggybacking mechanism.

7.
Viruses ; 12(6)2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503156

RESUMEN

Viruses alter a multitude of host-cell processes to create a more optimal environment for viral replication. This includes altering metabolism to provide adequate substrates and energy required for replication. Typically, viral infections induce a metabolic phenotype resembling the Warburg effect, with an upregulation of glycolysis and a concurrent decrease in cellular respiration. Human adenovirus (HAdV) has been observed to induce the Warburg effect, which can be partially attributed to the adenovirus protein early region 4, open reading frame 1 (E4orf1). E4orf1 regulates a multitude of host-cell processes to benefit viral replication and can influence cellular metabolism through the transcription factor avian myelocytomatosis viral oncogene homolog (MYC). However, E4orf1 does not explain the full extent of Warburg-like HAdV metabolic reprogramming, especially the accompanying decrease in cellular respiration. The HAdV protein early region 1A (E1A) also modulates the function of the infected cell to promote viral replication. E1A can interact with a wide variety of host-cell proteins, some of which have been shown to interact with metabolic enzymes independently of an interaction with E1A. To determine if the HAdV E1A proteins are responsible for reprogramming cell metabolism, we measured the extracellular acidification rate and oxygen consumption rate of A549 human lung epithelial cells with constitutive endogenous expression of either of the two major E1A isoforms. This was followed by the characterization of transcript levels for genes involved in glycolysis and cellular respiration, and related metabolic pathways. Cells expressing the 13S encoded E1A isoform had drastically increased baseline glycolysis and lower maximal cellular respiration than cells expressing the 12S encoded E1A isoform. Cells expressing the 13S encoded E1A isoform exhibited upregulated expression of glycolysis genes and downregulated expression of cellular respiration genes. However, tricarboxylic acid cycle genes were upregulated, resembling anaplerotic metabolism employed by certain cancers. Upregulation of glycolysis and tricarboxylic acid cycle genes was also apparent in IMR-90 human primary lung fibroblast cells infected with a HAdV-5 mutant virus that expressed the 13S, but not the 12S encoded E1A isoform. In conclusion, it appears that the two major isoforms of E1A differentially influence cellular glycolysis and oxidative phosphorylation and this is at least partially due to the altered regulation of mRNA expression for the genes in these pathways.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/metabolismo , Células Epiteliales/virología , Pulmón/virología , Células A549 , Proteínas E1A de Adenovirus/genética , Infecciones por Adenovirus Humanos/genética , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/genética , Células Epiteliales/metabolismo , Glucólisis , Humanos , Pulmón/metabolismo , Fosforilación Oxidativa , Oxígeno/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...