Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(8)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37606335

RESUMEN

Investigating the role of chiral-induced spin selectivity in the generation of spin correlated radical pairs in a photoexcited donor-chiral bridge-acceptor system is fundamental to exploit it in quantum technologies. This requires a minimal master equation description of both charge separation and recombination through a chiral bridge. To achieve this without adding complexity and entering in the microscopic origin of the phenomenon, we investigate the implications of spin-polarizing reaction operators to the master equation. The explicit inclusion of coherent evolution yields non-trivial behaviors in the charge and spin dynamics of the system. Finally, we apply this master equation to a setup comprising a molecular qubit attached to the donor-bridge-acceptor molecule, enabling qubit initialization, control, and read-out. Promising results are found by simulating this sequence of operations assuming realistic parameters and achievable experimental conditions.

2.
Adv Mater ; 35(28): e2300472, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37170702

RESUMEN

Molecular spins are promising building blocks of future quantum technologies thanks to the unparalleled flexibility provided by chemistry, which allows the design of complex structures targeted for specific applications. However, their weak interaction with external stimuli makes it difficult to access their state at the single-molecule level, a fundamental tool for their use, for example, in quantum computing and sensing. Here, an innovative solution exploiting the interplay between chirality and magnetism using the chirality-induced spin selectivity effect on electron transfer processes is foreseen. It is envisioned to use a spin-to-charge conversion mechanism that can be realized by connecting a molecular spin qubit to a dyad where an electron donor and an electron acceptor are linked by a chiral bridge. By numerical simulations based on realistic parameters, it is shown that the chirality-induced spin selectivity effect could enable initialization, manipulation, and single-spin readout of molecular qubits and qudits even at relatively high temperatures.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Tecnología , Transporte de Electrón
3.
Chem Sci ; 13(41): 12208-12218, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36349110

RESUMEN

It is well assessed that the charge transport through a chiral potential barrier can result in spin-polarized charges. The possibility of driving this process through visible photons holds tremendous potential for several aspects of quantum information science, e.g., the optical control and readout of qubits. In this context, the direct observation of this phenomenon via spin-sensitive spectroscopies is of utmost importance to establish future guidelines to control photo-driven spin selectivity in chiral structures. Here, we provide direct proof that time-resolved electron paramagnetic resonance (EPR) can be used to detect long-lived spin polarization generated by photoinduced charge transfer through a chiral bridge. We propose a system comprising CdSe quantum dots (QDs), as a donor, and C60, as an acceptor, covalently linked through a saturated oligopeptide helical bridge (χ) with a rigid structure of ∼10 Å. Time-resolved EPR spectroscopy shows that the charge transfer in our system results in a C60 radical anion, whose spin polarization maximum is observed at longer times with respect to that of the photogenerated C60 triplet state. Notably, the theoretical modelling of the EPR spectra reveals that the observed features may be compatible with chirality-induced spin selectivity, but the electronic features of the QD do not allow the unambiguous identification of the CISS effect. Nevertheless, we identify which parameters need optimization for unambiguous detection and quantification of the phenomenon. This work lays the basis for the optical generation and direct manipulation of spin polarization induced by chirality.

4.
Phys Chem Chem Phys ; 24(34): 20030-20039, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35833847

RESUMEN

Thanks to the large number of levels which can be coherently manipulated, molecular spin systems constitute a very promising platform for quantum computing. Indeed, they can embed quantum error correction within single molecular objects, thus greatly simplifying its actual realization in the short term. We consider a recent proposal, which exploits a spin qudit to encode the protected unit, and is tailored to fight pure dephasing. Here we compare the implementation of this code on different molecules, in which the qudit is provided by either an electronic or a nuclear spin (S, I > 1), coupled to a spin-1/2 electronic ancilla for error detection. By thorough numerical simulations we show that a significant gain in the effective phase memory time can be achieved. This is further enhanced by exploiting pulse-shaping techniques to reduce the leakage and/or the impact of decoherence during correction. Moreover, we simulate the implementation of single-qubit operations on the encoded states.

5.
Phys Chem Chem Phys ; 24(34): 20565, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35904055

RESUMEN

Correction for 'Quantum error correction with molecular spin qudits' by Mario Chizzini et al., Phys. Chem. Chem. Phys., 2022, https://doi.org/10.1039/D2CP01228F.

6.
J Phys Chem Lett ; 12(36): 8826-8832, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34491740

RESUMEN

We discuss a cost-effective approach to understand magnetic relaxation in the new generation of rare-earth single-molecule magnets. It combines ab initio calculations of the crystal field parameters, of the magneto-elastic coupling with local modes, and of the phonon density of states with fitting of only three microscopic parameters. Although much less demanding than a fully ab initio approach, the method gives important physical insights into the origin of the observed relaxation. By applying it to high-anisotropy compounds with very different relaxation, we demonstrate the power of the approach and pinpoint ingredients for improving the performance of single-molecule magnets.

7.
Chem Sci ; 11(38): 10337-10343, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36196278

RESUMEN

We show that a [Er-Ce-Er] molecular trinuclear coordination compound is a promising platform to implement the three-qubit quantum error correction code protecting against pure dephasing, the most important error in magnetic molecules. We characterize it by preparing the [Lu-Ce-Lu] and [Er-La-Er] analogues, which contain only one of the two types of qubit, and by combining magnetometry, low-temperature specific heat and electron paramagnetic resonance measurements on both the elementary constituents and the trimer. Using the resulting parameters, we demonstrate by numerical simulations that the proposed molecular device can efficiently suppress pure dephasing of the spin qubits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA