Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39041039

RESUMEN

The secretion of cortisol in humans and corticosterone (Cort) in rodents follows a daily rhythm which is important in readying the individual for the daily active cycle and is impaired in chronic depression. This rhythm is orchestrated by the suprachiasmatic nucleus (SCN) which governs the activity of neurons in the paraventricular nucleus of the hypothalamus that produce the corticotropin-releasing hormone (PVHCRH neurons). The dorsomedial nucleus of the hypothalamus (DMH) serves as a crucial intermediary, being innervated by the SCN both directly and via relays in the subparaventricular zone, and projecting axons to the PVH, thereby exerting influence over the cortisol/corticosterone rhythm. However, the role and synaptic mechanisms by which DMH neurons regulate the daily rhythm of Cort secretion has not been explored. We found that either ablating or acutely inhibiting the DMH glutamatergic (DMHVglut2) neurons resulted in a 40-70% reduction in the daily peak of Cort. Deletion of the Vglut2 gene within the DMH produced a similar effect, highlighting the indispensable role of glutamatergic signaling. Chemogenetic stimulation of DMHVglut2 neurons led to an increase of Cort levels, and optogenetic activation of their terminals in the PVH in hypothalamic slices directly activated PVHCRH neurons through glutamate release (the DMHVglut2 → PVHCRH pathway). Similarly, ablating, inhibiting, or disrupting GABA transmission by DMH GABAergic (DMHVgat) neurons diminished the circadian peak of Cort, particularly under constant darkness conditions. Chemogenetic stimulation of DMHVgat neurons increased Cort, although with a lower magnitude compared to DMHVglut2 neuron stimulation, suggesting a role in disinhibiting PVHCRH neurons. Supporting this hypothesis, we found that rostral DMHVgat neurons project directly to GABAergic neurons in the caudal ventral part of the PVH and adjacent peri-PVH area (cvPVH), which directly inhibit PVHCRH neurons, and that activating the DMHVgat terminals in the cvPVH in brain slices reduced GABAergic afferent input onto the PVHCRH neurons. Finally, ablation of cvPVHVgat neurons resulted in increased Cort release at the onset of the active phase, affirming the pivotal role of the DMHVgat → cvPVHVgat → PVHCRH pathway in Cort secretion. In summary, our study delineates two parallel pathways transmitting temporal information to PVHCRH neurons, collectively orchestrating the daily surge in Cort in anticipation of the active phase. These findings are crucial to understand the neural circuits regulating Cort secretion, shedding light on the mechanisms governing this physiological process and the coordinated interplay between SCN, DMH, and PVH.

2.
Nat Commun ; 15(1): 4646, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821928

RESUMEN

AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.


Asunto(s)
Hambre , Factor 3 Regulador del Interferón , Leptina , Neuronas , Animales , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/genética , Núcleo Arqueado del Hipotálamo/metabolismo , Cromatina , Epigénesis Genética , Ayuno , Regulación de la Expresión Génica , Hambre/fisiología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Leptina/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA