Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Bioresour Technol ; 388: 129708, 2023 Nov.
Article En | MEDLINE | ID: mdl-37625653

The rise of contaminants of emerging concern in water-resources due to human activities has driven research toward wastewater treatment, specifically adsorption. The utilization of woody biomass for biochar production in adsorption has shown promise due to its high availability. This study shows the preparation of magnetic biochars (MB) from waste black wattle sawdust, utilizing ZnCl2 and NiCl2 (proportions: 1:0.5:0.5 = MB-0.5 and 1:1:1 = MB-1) as activating and magnetic agents. Synthesized via microwave-assisted-pyrolysis, MB boasts a high surface area (up to 765 m2.g-1) and functional groups, enhancing metoprolol medicine adsorption. Nonlinear kinetic and isothermal models were tested; the Avrami fractional-order kinetic model and Liu's isothermal model provided the best fits for experimental data. Thermodynamics and spectroscopic studies revealed spontaneous and exothermic adsorption processes, with physisorption magnitude and dominance of hydrogen-bond and π-π-interactions. MB can be easily extracted from an aqueous medium using magnetic fields, while adsorption capacity could be regenerated through green solvent elution.

2.
Molecules ; 28(4)2023 Feb 15.
Article En | MEDLINE | ID: mdl-36838808

Water pollution by dyes has been a major environmental problem to be tackled, and magnetic adsorbents appear as promising alternatives to solve it. Herein, magnetic activated carbons were prepared by the single-step method from Sapelli wood sawdust, properly characterized, and applied as adsorbents for brilliant blue dye removal. In particular, two magnetic activated carbons, MAC1105 and MAC111, were prepared using the proportion of biomass KOH of 1:1 and varying the proportion of NiCl2 of 0.5 and 1. The characterization results demonstrated that the different proportions of NiCl2 mainly influenced the textural characteristics of the adsorbents. An increase in the surface area from 260.0 to 331.5 m2 g-1 and in the total pore volume from 0.075 to 0.095 cm3 g-1 was observed with the weight ratio of NiCl2. Both adsorbents exhibit ferromagnetic properties and the presence of nanostructured Ni particles. The different properties of the materials influenced the adsorption kinetics and equilibrium of brilliant blue dye. MAC111 showed faster kinetics, reaching the equilibrium in around 10 min, while for MAC1105, it took 60 min for the equilibrium to be reached. In addition, based on the Sips isotherm, the maximum adsorption capacity was 98.12 mg g-1 for MAC111, while for MAC1105, it was 60.73 mg g-1. Furthermore, MAC111 presented the potential to be reused in more adsorption cycles than MAC1105, and the use of the adsorbents in the treatment of a simulated effluent exhibited high effectiveness, with removal efficiencies of up to 90%.


Charcoal , Water Pollutants, Chemical , Adsorption , Coloring Agents , Magnetic Phenomena , Kinetics , Methylene Blue , Hydrogen-Ion Concentration
3.
Environ Sci Pollut Res Int ; 26(5): 4690-4702, 2019 Feb.
Article En | MEDLINE | ID: mdl-30565105

High specific surface area activated carbon prepared from endocarp of Jerivá (Syagrus romanzoffiana) (ACJ) was used for ciprofloxacin (CIP) antibiotic removal from aqueous effluents. The activated carbon (AC) was characterized via scanning electron microscope, Fourier transform infrared spectroscopy, N2 adsorption/desorption, and pH value at the zero-charge point. Avrami kinetic model was the one that best fit the experimental results in comparison to the pseudo-first-order and pseudo-second-order kinetic models. The equilibrium data obeyed the Liu isotherm equation, showing a maximum adsorption capacity of 335.8 mg g-1 at 40 °C. The calculated thermodynamic parameters indicate that the adsorption of CIP was spontaneous and endothermic at all studied temperatures. Also, the free enthalpy changes (∆H° = 3.34 kJ mol-1) suggested physical adsorption between CIP and ACJ. Simulated effluents were utilized to check the potential of the ACJ for wastewater purification. The highly efficient features enable the activated carbon prepared from endocarp of Jerivá, an attractive carbon adsorbent, to remove ciprofloxacin from wastewaters.


Arecaceae/chemistry , Charcoal/chemistry , Ciprofloxacin/isolation & purification , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Adsorption , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Ciprofloxacin/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Nitrogen/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Thermodynamics , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods
...