Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 341(Pt 1): 128165, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33038777

RESUMEN

The aim of this study was to develop a multi-analyte UHPLC method for furans and to apply it to commercial coffee samples as well as commercial roasting trials. Furans, as rising time-temperature indicators (TTIs), promised to be an alternative to unsatisfactory roasting temperature measurements. Consequently, a UHPLC-UV method for the determination of 5-hydroxymethyl-2-furfural (HMF), 5-hydroxymethyl-2-furoic acid (HMFA), 2-furfural (F), 5-methylfurfural (MF), 2-furyl methyl ketone (FMC), 2-furoic acid (FA), and for 3-caffeoylquinic acid (3-CQA) was developed and validated. Commercial roasted coffee beans contained 77.7-322 mg/kg HMF, 73.3-158 mg/kg HMFA, 109-200 mg/kg 2-F, 157-209 mg/kg MF, 12.3-32.8 mg/kg FMC, and 137-205 mg/kg FA. Roasting trial samples showed strong rising HMF contents (max.: Arabica: 769 mg/kg, Robusta: 364 mg/kg) followed by a distinct decline. Only MF and FA appeared as steady rising TTIs in the roasting process in Arabica and Robusta beans. 3-CQA fitted well as a decreasing TTI as expected.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Café/química , Furanos/análisis , Semillas/química , Ácido Clorogénico/análisis , Análisis de los Alimentos/métodos , Industria de Procesamiento de Alimentos/métodos , Furaldehído/análogos & derivados , Furaldehído/análisis , Calor
2.
Food Chem ; 281: 124-129, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30658738

RESUMEN

Insects are rich in major nutrients, such as protein and fat. Recently, minor nutrients like vitamins have become the subjects of interest in insects. Hence, this study reports on the development and validation of a method for the determination of vitamin B12 in mealworm (Tenebrio molitor larvae), cricket (Gryllus assimilis), grasshopper (Locusta migratoria) and cockroach (Shelfordella lateralis), using an ultra-high performance liquid chromatography approach with preliminary immunoaffinity chromatography sample preparation. The method was validated regarding linearity, specificity, accuracy and precision, as well as limits of detection/quantification, and was found to be satisfactory for the desired application. Found levels of vitamin B12 were 1.08 µg/100 g for mealworm, 2.88 µg/100 g for cricket, 0.84 µg/100 g for grasshopper, and 13.2 µg/100 g dry weight for cockroach, representing the first validated report on the content of vitamin B12 in edible insects. Observed interferences are likely caused by the presence of pseudovitamin B12.


Asunto(s)
Cromatografía Líquida de Alta Presión , Insectos/química , Vitamina B 12/análisis , Animales , Cucarachas/química , Análisis de los Alimentos , Saltamontes/química , Gryllidae/química , Reproducibilidad de los Resultados , Tenebrio/química
4.
Arch Toxicol ; 91(12): 3857-3872, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28638985

RESUMEN

The Fusarium mycotoxin deoxynivalenol (DON) is a frequent contaminant of cereal-based food and feed. Mammals metabolize DON by conjugation to glucuronic acid (GlcAc), the extent and regioselectivity of which is species-dependent. So far, only DON-3-glucuronide (DON-3-GlcAc) and DON-15-GlcAc have been unequivocally identified as mammalian DON glucuronides, and DON-7-GlcAc has been proposed as further DON metabolite. In the present work, qualitative HPLC-MS/MS analysis of urine samples of animals treated with DON (rats: 2 mg/kg bw, single bolus, gavage; mice: 1 mg/kg bw, single i.p. injection; pigs: 74 µg/kg bw, single bolus, gavage; cows: 5.2 mg DON/kg dry mass, oral for 13 weeks) revealed additional DON and deepoxy-DON (DOM) glucuronides. To elucidate their structures, DON and DOM were incubated with human (HLM) and rat liver microsomes (RLM). Besides the expected DON/DOM-3- and 15-GlcAc, minor amounts of four DON- and four DOM glucuronides were formed. Isolation and enzymatic hydrolysis of four of these compounds yielded iso-DON and iso-DOM, the identities of which were eventually confirmed by NMR. Incubation of iso-DON and iso-DOM with RLM and HLM yielded two main glucuronides for each parent compound, which were isolated and identified as iso-DON/DOM-3-GlcAc and iso-DON/DOM-8-GlcAc by NMR. Iso-DON-3-GlcAc, most likely misidentified as DON-7-GlcAc in the literature, proved to be a major DON metabolite in rats and a minor metabolite in pigs. In addition, iso-DON-8-GlcAc turned out to be one of the major DON metabolites in mice. DOM-3-GlcAc was the dominant DON metabolite in urine of cows and an important DON metabolite in rat urine. Iso-DOM-3-GlcAc was detected in urine of DON-treated rats and cows. Finally, DON-8,15-hemiketal-8-glucuronide, a previously described by-product of DON-3-GlcAc production by RLM, was identified in urine of DON-exposed mice and rats. The discovery of several novel DON-derived glucuronides in animal urine requires adaptation of the currently used methods for DON-biomarker analysis.


Asunto(s)
Tricotecenos/farmacocinética , Tricotecenos/orina , Animales , Bovinos , Cromatografía Líquida de Alta Presión/métodos , Glucurónidos/metabolismo , Glucurónidos/orina , Humanos , Hidrólisis , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas , Porcinos , Espectrometría de Masas en Tándem , Tricotecenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA