Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Bioinformatics ; 38(20): 4817-4819, 2022 10 14.
Article En | MEDLINE | ID: mdl-36029248

SUMMARY: DNA metabarcoding is an emerging approach to assess and monitor biodiversity worldwide and consequently the number and size of data sets increases exponentially. To date, no published DNA metabarcoding data processing pipeline exists that is (i) platform independent, (ii) easy to use [incl. graphical user interface (GUI)], (iii) fast (does scale well with dataset size) and (iv) complies with data protection regulations of e.g. environmental agencies. The presented pipeline APSCALE meets these requirements and handles the most common tasks of sequence data processing, such as paired-end merging, primer trimming, quality filtering, clustering and denoising of any popular metabarcoding marker, such as internal transcribed spacer, 16S or cytochrome c oxidase subunit I. APSCALE comes in a command line and a GUI version. The latter provides the user with additional summary statistics options and links to GUI-based downstream applications. AVAILABILITY AND IMPLEMENTATION: APSCALE is written in Python, a platform-independent language, and integrates functions of the open-source tools, VSEARCH (Rognes et al., 2016), cutadapt (Martin, 2011) and LULU (Frøslev et al., 2017). All modules support multithreading to allow fast processing of larger DNA metabarcoding datasets. Further information and troubleshooting are provided on the respective GitHub pages for the command-line version (https://github.com/DominikBuchner/apscale) and the GUI-based version (https://github.com/TillMacher/apscale_gui), including a detailed tutorial. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


DNA Barcoding, Taxonomic , Software , Electron Transport Complex IV
2.
Mol Ecol Resour ; 21(5): 1705-1714, 2021 Jul.
Article En | MEDLINE | ID: mdl-33590697

DNA metabarcoding is increasingly used as a tool to assess biodiversity in research and environmental management. Powerful analysis software exists to process raw data. However, the translation of sequence read data into biological information and downstream analyses may be difficult for end users with limited expertise in bioinformatics. Thus, there is a growing need for easy-to-use, graphical user interface (GUI) software to analyse and visualise DNA metabarcoding data. Here, we present TaxonTableTools (TTT), a new platform-independent GUI that aims to fill this gap by providing simple, reproducible analysis and visualisation workflows. At its base, TTT uses a "TaXon table", which is a data format that can be generated easily within TTT from two input files: a read table and a taxonomy table obtained using various published metabarcoding pipelines. TTT analysis and visualisation modules include Venn diagrams to compare taxon overlap among replicates, samples, or analysis methods. TTT analyses and visualises basic statistics, such as read proportion per taxon, as well as more sophisticated visualisations, such as interactive Krona charts for taxonomic data exploration. Various ecological analyses can be produced directly, including alpha or beta diversity estimates, and rarefaction analysis ordination plots. Metabarcoding data can be converted into formats required for traditional, taxonomy-based analyses performed by regulatory bioassessment programs. In addition, TTT is able to produce html-based interactive graphics that can be analysed in any web browser. The software comes with a manual and tutorial, is free and publicly available through GitHub (https://github.com/TillMacher/TaxonTableTools) or the Python package index (https://pypi.org/project/taxontabletools/).


Computational Biology , DNA Barcoding, Taxonomic , Software , Biodiversity , DNA , Data Visualization
3.
Environ Sci Ecotechnol ; 8: 100122, 2021 Oct.
Article En | MEDLINE | ID: mdl-36156998

Reliable and comprehensive monitoring data are required to trace and counteract biodiversity loss. High-throughput metabarcoding using DNA extracted from community samples (bulk) or from water or sediment (environmental DNA) has revolutionized biomonitoring, given the capability to assess biodiversity across the tree of life rapidly with feasible effort and at a modest price. DNA metabarcoding can be upscaled to process hundreds of samples in parallel. However, while automated high-throughput analysis workflows are well-established in the medical sector, manual sample processing still predominates in biomonitoring laboratory workflows limiting the upscaling and standardization for routine monitoring applications. Here we present an automated, scalable, and reproducible metabarcoding workflow to extract DNA from bulk samples, perform PCR and library preparation on a liquid handler. Key features are the independent sample replication throughout the workflow and the use of many negative controls for quality assurance and quality control. We generated two datasets: i) a validation dataset consisting of 42 individual arthropod specimens of different species, and ii) a routine monitoring dataset consisting of 60 stream macroinvertebrate bulk samples. As a marker, we used the mitochondrial COI gene. Our results show that the developed single-deck workflow is free of laboratory-derived contamination and produces highly consistent results. Minor deviations between replicates are mostly due to stochastic differences for low abundant OTUs. Thus, we successfully demonstrated that robotic liquid handling can be used reliably from DNA extraction to final library preparation on a single deck, thereby substantially increasing throughput, reducing costs, and increasing data robustness for biodiversity assessments and monitoring.

4.
Front Zool ; 16: 36, 2019.
Article En | MEDLINE | ID: mdl-31516540

BACKGROUND: Pallenopsis patagonica (Hoek, 1881) is a morphologically and genetically variable sea spider species whose taxonomic classification is challenging. Currently, it is considered as a species complex including several genetic lineages, many of which have not been formally described as species. Members of this species complex occur on the Patagonian and Antarctic continental shelves as well as around sub-Antarctic islands. These habitats have been strongly influenced by historical large-scale glaciations and previous studies suggested that communities were limited to very few refugia during glacial maxima. Therefore, allopatric speciation in these independent refugia is regarded as a common mechanism leading to high biodiversity of marine benthic taxa in the high-latitude Southern Hemisphere. However, other mechanisms such as ecological speciation have rarely been considered or tested. Therefore, we conducted an integrative morphological and genetic study on the P. patagonica species complex to i) resolve species diversity using a target hybrid enrichment approach to obtain multiple genomic markers, ii) find morphological characters and analyze morphometric measurements to distinguish species, and iii) investigate the speciation processes that led to multiple lineages within the species complex. RESULTS: Phylogenomic results support most of the previously reported lineages within the P. patagonica species complex and morphological data show that several lineages are distinct species with diagnostic characters. Two lineages are proposed as new species, P. aulaeturcarum sp. nov. Dömel & Melzer, 2019 and P. obstaculumsuperavit sp. nov. Dömel, 2019, respectively. However, not all lineages could be distinguished morphologically and thus likely represent cryptic species that can only be identified with genetic tools. Further, morphometric data of 135 measurements showed a high amount of variability within and between species without clear support of adaptive divergence in sympatry. CONCLUSIONS: We generated an unprecedented molecular data set for members of the P. patagonica sea spider species complex with a target hybrid enrichment approach, which we combined with extensive morphological and morphometric analyses to investigate the taxonomy, phylogeny and biogeography of this group. The extensive data set enabled us to delineate species boundaries, on the basis of which we formally described two new species. No consistent evidence for positive selection was found, rendering speciation in allopatric glacial refugia as the most likely model of speciation.

...