Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(5): e2305202, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044325

RESUMEN

The propulsion and acceleration of nanoparticles with light have both fundamental and applied significance across many disciplines. Needle-free injection of biomedical nano cargoes into living tissues is among the examples. Here a new physical mechanism of laser-induced particle acceleration is explored, based on abnormal optothermal expansion of mesoporous vaterite cargoes. Vaterite nanoparticles, a metastable form of calcium carbonate, are placed on a substrate, underneath a target phantom, and accelerated toward it with the aid of a short femtosecond laser pulse. Light absorption followed by picosecond-scale thermal expansion is shown to elevate the particle's center of mass thus causing acceleration. It is shown that a 2 µm size vaterite particle, being illuminated with 0.5 W average power 100 fsec IR laser, is capable to overcome van der Waals attraction and acquire 15m sec-1 velocity. The demonstrated optothermal laser-driven needle-free injection into a phantom layer and Xenopus oocyte in vitro promotes the further development of light-responsive nanocapsules, which can be equipped with additional optical and biomedical functions for delivery, monitoring, and controllable biomedical dosage to name a few.

2.
Cryst Growth Des ; 23(11): 8009-8017, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37937190

RESUMEN

Controllable continuous release of functional materials from capsules is one of the unmet functions of theragnosis particles; on this way, understanding cargo-fluid interactions in vitro is an essential milestone. We develop a flexible platform to investigate single particle-fluid interactions utilizing a glass micropipette as a highly localized flow source around an optically trapped particle. In proof-of-concept experiments, this microparticle is sensitive to local microflow distribution, thus serving as a probe. The very same flows are capable of the particle rotating (i.e., vaterite drug cargo) at frequencies dependent on the mutual particle-pipette position. Platform flexibility comes from different interactions of a tweezer (optical forces) and a pipette (mechanical/hydrodynamical) with a microparticle, which makes this arrangement an ideal microtool. We studied the vaterite dissolution kinetics and demonstrated that it can be controlled on demand, providing a wide cargo release dynamic rate. Our results promote the use of inorganic mesoporous nanoparticles as a nanomedicine platform.

3.
Sci Rep ; 13(1): 12158, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500742

RESUMEN

Laser beams, capable of controlling the mechanical motion of micron-scale objects, can serve as a tool, enabling investigations of numerous interaction scenarios under full control. Beyond pure electromagnetic interactions, giving rise to conventional gradient forces and radiation pressure, environment-induced thermal effects can play a role and, in certain cases, govern the dynamics. Here we explore a thermocapillary Marangoni effect, which is responsible for creating long-range few hundreds of nano-Newton forces, acting on a bubble around a 'gilded vaterite' nanoparticle. Decorating calcium carbonate spherulite (the vaterite) with gold nanoseeds allows tuning its optical absorption and, as a result, controlling its temperature in a solution. We demonstrate that keeping a balance between electromagnetic and thermal interactions allows creating of a stable micron-scale bubble around the particle and maintaining its size over time. The bubbles are shown to remain stable over minutes even after the light source is switched off. The bubbles were shown to swim toward a laser focus for over 400-µm distances across the sample. Optothermal effects, allowing for efficient transport, stable bubble creation, and particle-fluid interaction control, can grant nano-engineered drug delivery capsules with additional functions toward a theragnostic paradigm shift.

4.
Nanoscale ; 14(3): 993-1000, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34989740

RESUMEN

Semiconductor nanowires exhibit numerous capabilities to advance the development of future optoelectronic devices. Among the III-V material family, gallium phosphide (GaP) is an attractive platform with low optical absorption and high nonlinear susceptibility, making it especially promising for nanophotonic applications. However, investigation of single nanostructures and their waveguiding properties remains challenging owing to typically planar experimental arrangements. Here we study the linear and nonlinear waveguiding optical properties of a single GaP nanowire in a special experimental layout, where an optically trapped structure is aligned along its major axis. We demonstrate efficient second harmonic generation in individual nanowires and unravel phase matching conditions, linking between linear guiding properties of the structure and its nonlinear tensorial susceptibility. The capability to pick up single nanowires, sort them with the aid of optomechanical manipulation and accurately position pre-tested structures opens a new avenue for the generation of optoelectronic origami-type devices.

5.
Opt Lett ; 46(19): 4828-4831, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598210

RESUMEN

Functional nanocoatings of hollow-core microstructured optical fibers (HC-MOFs) have extended the domain of their applications to biosensing and photochemistry. However, novel modalities typically come with increased optical losses since a significant surface roughness of functional layers gives rise to additional light scattering, restricting the performance of functionalization. Here, the technique that enables a biocompatible and removable nanocoating of HC-MOFs with low surface roughness is presented. The initial functional film is formed by a layer-by-layer assembly of bovine serum albumin (BSA) and tannic acid (TA). The alkaline etching at pH 9 results in the reduction of surface roughness from 26 nm to 3 nm and decreases fiber optical losses by three times. The nanocoating can be fully removed within 7 min of the treatment. Natural biocompatibility of BSA alongside antibacterial and antifouling properties of TA makes the presented nanocoating promising for biophotonic applications.

6.
ACS Appl Nano Mater ; 4(9): 9919-9931, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34622144

RESUMEN

Carbon dots keep attracting attention in multidisciplinary fields, motivating the development of new compounds. Phenylenediamine C6H4(NH2)2 dots are known to exhibit colorful emission, which depends on size, composition, and the functional surface groups, forming those structures. While quite a few fabrication protocols have been developed, the quantum yield of phenylenediamine dots still does not exceed 50% owing to undesired fragment formation during carbonization. Here, we demonstrate that an ethylene glycol-based environment allows obtaining multicolor high-quantum-yield phenylenediamine carbon dots. In particular, a kinetic realization of solvothermal synthesis in acidic environments enhances carbonization reaction yield for meta phenylenediamine compounds and leads to quantum yields, exciting 60%. Reaction yield after the product's purification approaches 90%. Furthermore, proximity of metal ions (Nd3+, Co3+, La3+) can either enhance or quench the emission, depending on the concentration. Optical monitoring of the solution allows performing an accurate detection of ions at picomolar concentrations. An atomistic model of carbon dots was developed to confirm that the functional surface group positioning within the molecular structure has a major impact on dots' physicochemical properties. The high performance of new carbon dots paves the way toward their integration in numerous applications, including imaging, sensing, and therapeutics.

7.
Sci Rep ; 11(1): 17609, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475484

RESUMEN

Bioinspired fluorescence, being widely explored for imaging purposes, faces challenges in delivering bright biocompatible sources. While quite a few techniques have been developed to reach this goal, encapsulation of high-quantum yield fluorescent dyes in natural biological forms suggest achieving superior light-emitting characteristics, approaching amplified spontaneous emission and even lasing. Here we compare gain capabilities of highly concentrated Rhodamine B solutions with a newly synthesized biocompatible peptide derivative hybrid polymer/peptide material, RhoB-PEG1300-F6, which contains the fluorescent covalently bound dye. While concentration quenching effects limit the maximal achievable gain of dissolved Rhodamine B, biocompatible conjugation allows elevating amplification coefficients towards moderately high values. In particular, Rhodamine B, anchored to the peptide derivative material, demonstrates gain of 22-23 cm-1 for a 10-2 M solution, while a pure dye solution possesses 25% smaller values at the same concentration. New biocompatible fluorescent agents pave ways to demonstrate lasing in living organisms and can be further introduced to therapeutic applications, if proper solvents are found.

8.
Adv Mater ; 33(25): e2008484, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33984163

RESUMEN

Mesoscopic photonic systems with tailored optical responses have great potential to open new frontiers in implantable biomedical devices. However, biocompatibility is typically a problem, as engineering of optical properties often calls for using toxic compounds and chemicals, unsuitable for in vivo applications. Here, a unique approach to biofriendly delivery of optical resonances is demonstrated. It is shown that the controllable infusion of gold nanoseeds into polycrystalline sub-micrometer vaterite spherulites gives rise to a variety of electric and magnetic Mie resonances, producing a tuneable mesoscopic optical metamaterial. The 3D reconstruction of the spherulites demonstrates the capability of controllable gold loading with volumetric filling factors exceeding 28%. Owing to the biocompatibility of the constitutive elements, "golden vaterite" paves the way to introduce designer-made Mie resonances to cutting-edge biophotonic applications. This concept is exemplified by showing efficient laser heating of gold-filled vaterite spherulites at red and near-infrared wavelengths, highly desirable in photothermal therapy, and photoacoustic tomography.


Asunto(s)
Carbonato de Calcio , Oro , Luz
9.
Light Sci Appl ; 9: 173, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082942

RESUMEN

The state of the art in optical biosensing is focused on reaching high sensitivity at a single wavelength by using any type of optical resonance. This common strategy, however, disregards the promising possibility of simultaneous measurements of a bioanalyte's refractive index over a broadband spectral domain. Here, we address this issue by introducing the approach of in-fibre multispectral optical sensing (IMOS). The operating principle relies on detecting changes in the transmission of a hollow-core microstructured optical fibre when a bioanalyte is streamed through it via liquid cells. IMOS offers a unique opportunity to measure the refractive index at 42 wavelengths, with a sensitivity up to ~3000 nm per refractive index unit (RIU) and a figure of merit reaching 99 RIU-1 in the visible and near-infra-red spectral ranges. We apply this technique to determine the concentration and refractive index dispersion for bovine serum albumin and show that the accuracy meets clinical needs.

10.
Nano Lett ; 19(10): 7062-7071, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31496253

RESUMEN

Being the polymorphs of calcium carbonate (CaCO3), vaterite and calcite have attracted a great deal of attention as promising biomaterials for drug delivery and tissue engineering applications. Furthermore, they are important biogenic minerals, enabling living organisms to reach specific functions. In nature, vaterite and calcite monocrystals typically form self-assembled polycrystal micro- and nanoparticles, also referred to as spherulites. Here, we demonstrate that alpine plants belonging to the Saxifraga genus can tailor light scattering channels and utilize multipole interference effect to improve light collection efficiency via producing CaCO3 polycrystal nanoparticles on the margins of their leaves. To provide a clear physical background behind this concept, we study optical properties of artificially synthesized vaterite nanospherulites and reveal the phenomenon of directional light scattering. Dark-field spectroscopy measurements are supported by a comprehensive numerical analysis, accounting for the complex microstructure of particles. We demonstrate the appearance of generalized Kerker condition, where several higher order multipoles interfere constructively in the forward direction, governing the interaction phenomenon. As a result, highly directive forward light scattering from vaterite nanospherulites is observed in the entire visible range. Furthermore, ex vivo studies of microstructure and optical properties of leaves for the alpine plants Saxifraga "Southside Seedling" and Saxifraga Paniculata Ria are performed and underline the importance of the Kerker effect for these living organisms. Our results pave the way for a bioinspired strategy of efficient light collection by self-assembled polycrystal CaCO3 nanoparticles via tailoring light propagation directly to the photosynthetic tissue with minimal losses to undesired scattering channels.


Asunto(s)
Carbonato de Calcio/metabolismo , Nanopartículas/metabolismo , Hojas de la Planta/metabolismo , Saxifragaceae/metabolismo , Cristalización , Luz , Procesos Fotoquímicos
11.
Light Sci Appl ; 7: 22, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839617

RESUMEN

Optically levitated micro- and nanoparticles offer an ideal playground for investigating photon-phonon interactions over macroscopic distances. Here we report the observation of long-range optical binding of multiple levitated microparticles, mediated by intermodal scattering and interference inside the evacuated core of a hollow-core photonic crystal fibre (HC-PCF). Three polystyrene particles with a diameter of 1 µm are stably bound together with an inter-particle distance of ~40 µm, or 50 times longer than the wavelength of the trapping laser. The levitated bound-particle array can be translated to-and-fro over centimetre distances along the fibre. When evacuated to a gas pressure of 6 mbar, the collective mechanical modes of the bound-particle array are able to be observed. The measured inter-particle distance at equilibrium and mechanical eigenfrequencies are supported by a novel analytical formalism modelling the dynamics of the binding process. The HC-PCF system offers a unique platform for investigating the rich optomechanical dynamics of arrays of levitated particles in a well-isolated and protected environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...