Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(34): 15431-15436, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35976628

RESUMEN

Heterogeneous palladium catalysts modified by N-heterocyclic carbenes (NHCs) are shown to be highly effective toward the direct synthesis of hydrogen peroxide (H2O2), in the absence of the promoters which are typically required to enhance both activity and selectivity. Catalytic evaluation in a batch regime demonstrated that through careful selection of the N-substituent of the NHC it is possible to greatly enhance catalytic performance when compared to the unmodified analogue and reach concentrations of H2O2 rivaling that obtained by state-of-the-art catalysts. The enhanced performance of the modified catalyst, which is retained upon reuse, is attributed to the ability of the NHC to electronically modify Pd speciation.


Asunto(s)
Compuestos Heterocíclicos , Paladio , Catálisis , Peróxido de Hidrógeno , Metano/análogos & derivados
2.
Nanomaterials (Basel) ; 8(9)2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30189685

RESUMEN

The solvent-free selective hydrogenation of nitrobenzene was carried out using a supported AuPd nanoparticles catalyst, prepared by the modified impregnation method (MIm), as efficient catalyst >99% yield of aniline (AN) was obtained after 15 h at 90 °C, 3 bar H2 that can be used without any further purification or separation, therefore reducing cost and energy input. Supported AuPd nanoparticles catalyst, prepared by MIm, was found to be active and stable even after four recycle experiments, whereas the same catalyst prepared by SIm was deactivated during the recycle experiments. The most effective catalyst was tested for the chemoselective hydrogenation of 4-chloronitrobenzene (CNB) to 4-chloroaniline (CAN). The activation energy of CNB to CAN was found to be 25 kJ mol-1, while that of CNB to AN was found to be 31 kJ mol-1. Based on this, the yield of CAN was maximized (92%) by the lowering the reaction temperature to 25 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...