Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39137778

RESUMEN

Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah-/- mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease.

2.
Virology ; 589: 109921, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939648

RESUMEN

Human norovirus is the leading cause of acute gastroenteritis worldwide, however despite the significance of this pathogen, we have a limited understanding of how noroviruses cause disease, and modulate the innate immune response. Programmed cell death (PCD) is an important part of the innate response to invading pathogens, but little is known about how specific PCD pathways contribute to norovirus replication. Here, we reveal that murine norovirus (MNV) virus-induced PCD in macrophages correlates with the release of infectious virus. We subsequently show, genetically and chemically, that MNV-induced cell death and viral replication occurs independent of the activity of inflammatory mediators. Further analysis revealed that MNV infection promotes the cleavage of apoptotic caspase-3 and PARP. Correspondingly, pan-caspase inhibition, or BAX and BAK deficiency, perturbed viral replication rates and delayed virus release and cell death. These results provide new insights into how MNV harnesses cell death to increase viral burden.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Ratones , Humanos , Animales , Macrófagos , Apoptosis , Inmunidad Innata , Norovirus/fisiología , Replicación Viral
3.
Virology ; 590: 109969, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38118269

RESUMEN

Influenza A virus (IAV) is one of the major global public health concerns but the emerging resistance of IAV to currently available antivirals requires the need to identify potential alternatives. Polyphenol rich sugarcane extract (PRSE) is an extract prepared from the sugarcane plant Saccharum Officinarum. Herein we aimed to determine if PRSE had antiviral activity against IAV. We showed that treatment of IAV-infected cells with PRSE results in a dose-dependent inhibition of virus infection at concentrations that were non-cytotoxic. PRSE treatment limited the early stages of infection, reducing viral genome replication, mRNA transcription and viral protein expression. PRSE did not affect the ability of IAV to bind sialic acid or change the morphology of viral particles. Additionally, PRSE treatment attenuated the replication of multiple IAV strains of the H3N2 and H1N1 subtype. In conclusion, we show that PRSE displays antiviral activity against a broad range of IAV strains, in vitro.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Saccharum , Humanos , Polifenoles/farmacología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A , Replicación Viral , Extractos Vegetales/farmacología , Antivirales/farmacología
4.
mBio ; 15(2): e0249523, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132636

RESUMEN

Wolbachia are a genus of insect endosymbiotic bacteria which includes strains wMel and wAlbB that are being utilized as a biocontrol tool to reduce the incidence of Aedes aegypti-transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these Wolbachia strains are not well defined. Here, we generated a panel of Ae. aegypti-derived cell lines infected with antiviral strains wMel and wAlbB or the non-antiviral Wolbachia strain wPip to understand host cell morphological changes specifically induced by antiviral strains. Antiviral strains were frequently found to be entirely wrapped by the host endoplasmic reticulum (ER) membrane, while wPip bacteria clustered separately in the host cell cytoplasm. ER-derived lipid droplets (LDs) increased in volume in wMel- and wAlbB-infected cell lines and mosquito tissues compared to cells infected with wPip or Wolbachia-free controls. Inhibition of fatty acid synthase (required for triacylglycerol biosynthesis) reduced LD formation and significantly restored ER-associated dengue virus replication in cells occupied by wMel. Together, this suggests that antiviral Wolbachia strains may specifically alter the lipid composition of the ER to preclude the establishment of dengue virus (DENV) replication complexes. Defining Wolbachia's antiviral mechanisms will support the application and longevity of this effective biocontrol tool that is already being used at scale.IMPORTANCEAedes aegypti transmits a range of important human pathogenic viruses like dengue. However, infection of Ae. aegypti with the insect endosymbiotic bacterium, Wolbachia, reduces the risk of mosquito to human viral transmission. Wolbachia is being utilized at field sites across more than 13 countries to reduce the incidence of viruses like dengue, but it is not well understood how Wolbachia induces its antiviral effects. To examine this at the subcellular level, we compared how different strains of Wolbachia with varying antiviral strengths associate with and modify host cell structures. Strongly antiviral strains were found to specifically associate with the host endoplasmic reticulum and induce striking impacts on host cell lipid droplets. Inhibiting Wolbachia-induced lipid redistribution partially restored dengue virus replication demonstrating this is a contributing role for Wolbachia's antiviral activity. These findings provide new insights into how antiviral Wolbachia strains associate with and modify Ae. aegypti host cells.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Wolbachia , Animales , Humanos , Virus del Dengue/fisiología , Wolbachia/fisiología , Gotas Lipídicas , Replicación Viral , Retículo Endoplásmico , Antivirales , Lípidos
5.
Curr Protoc ; 3(7): e828, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37478303

RESUMEN

Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. Viruses in this family replicate in the intestine and are transmitted by the fecal-oral route. MNV is related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Given the technical challenges in studying human norovirus, MNV is often used to study mechanisms in norovirus biology since it combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Adding to our previous protocol collection, here we describe additional techniques that have since been developed to study MNV biology. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Indirect method for measuring cell cytotoxicity and antiviral activity Basic Protocol 2: Measuring murine norovirus genome titers by RT-qPCR Support Protocol 1: Preparation of standard Basic Protocol 3: Generation of recombinant murine norovirus with minimal passaging Basic Protocol 4: Generation of recombinant murine norovirus via circular polymerase extension reaction (CPER) Basic Protocol 5: Expression of norovirus NS1-2 in insect cell suspension cultures using a recombinant baculovirus Support Protocol 2: Isotope labelling of norovirus NS1-2 in insect cells Support Protocol 3: Purification of the norovirus NS1-2 protein Support Protocol 4: Expression of norovirus NS1-2 in mammalian cells by transduction with a recombinant baculovirus Basic Protocol 6: Infection of enteroids in transwell inserts with murine norovirus Support Protocol 5: Preparation of conditioned medium for enteroids culture Support Protocol 6: Isolation of crypts for enteroids generation Support Protocol 7: Enteroid culture passaging and maintenance Basic Protocol 7: Quantification of murine norovirus-induced diarrhea using neonatal mouse infections Alternate Protocol 1: Intragastric inoculation of neonatal mice Alternate Protocol 2: Scoring colon contents.


Asunto(s)
Caliciviridae , Norovirus , Ratones , Humanos , Animales , Norovirus/genética , Antivirales/farmacología , Caliciviridae/genética , Genoma , Mamíferos/genética
6.
Vaccine ; 41(33): 4888-4898, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37391311

RESUMEN

Countermeasures against Zika virus (ZIKV) epidemics are urgently needed. In this study we generated a ZIKV virus-like particle (VLP) based vaccine candidate and assessed the immunogenicity of these particles in mice. The ZIKV-VLPs were morphologically similar to ZIKV by electron microscopy and were recognized by anti-Flavivirus neutralising antibodies. We observed that a single dose of unadjuvanted ZIKV-VLPs, or inactivated ZIKV, generated an immune response that lasted over 6 months, but did not neutralize ZIKV infection of cells in vitro. However, when we co-administered the ZIKV VLPs with either Aluminium hydroxide (Alhydrogel®; Alum), AddaVax or Pam2Cys we observed that Alum was the most effective in a single dose regime, since it not only produced antibodies that neutralized the virus, but also generated a greater number of antigen-specific memory B cells. We additionally observed that the generation of the neutralising antibodies persisted for up to 6 months. Our results suggest that a single dose ZIKV VLPs could be a suitable single dose vaccine candidate for use in outbreak settings.


Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Adenoviridae
7.
Front Microbiol ; 14: 1065609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350788

RESUMEN

The development of virus-like particle (VLP) based vaccines for human papillomavirus, hepatitis B and hepatitis E viruses represented a breakthrough in vaccine development. However, for dengue and COVID-19, technical complications, such as an incomplete understanding of the requirements for protective immunity, but also limitations in processes to manufacture VLP vaccines for enveloped viruses to large scale, have hampered VLP vaccine development. Selecting the right adjuvant is also an important consideration to ensure that a VLP vaccine induces protective antibody and T cell responses. For diseases like COVID-19 and dengue fever caused by RNA viruses that exist as families of viral variants with the potential to escape vaccine-induced immunity, the development of more efficacious vaccines is also necessary. Here, we describe the development and characterisation of novel VLP vaccine candidates using SARS-CoV-2 and dengue virus (DENV), containing the major viral structural proteins, as protypes for a novel approach to produce VLP vaccines. The VLPs were characterised by Western immunoblot, enzyme immunoassay, electron and atomic force microscopy, and in vitro and in vivo immunogenicity studies. Microscopy techniques showed proteins self-assemble to form VLPs authentic to native viruses. The inclusion of the glycolipid adjuvant, α-galactosylceramide (α-GalCer) in the vaccine formulation led to high levels of natural killer T (NKT) cell stimulation in vitro, and strong antibody and memory CD8+ T cell responses in vivo, demonstrated with SARS-CoV-2, hepatitis C virus (HCV) and DEN VLPs. This study shows our unique vaccine formulation presents a promising, and much needed, new vaccine platform in the fight against infections caused by enveloped RNA viruses.

8.
EBioMedicine ; 92: 104574, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37148585

RESUMEN

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Asunto(s)
COVID-19 , Proteínas Portadoras , Cricetinae , Humanos , Ratones , Ratas , Animales , Vacunas contra la COVID-19 , SARS-CoV-2 , Subunidades de Proteína , COVID-19/prevención & control , Australia , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos Antivirales
9.
J Innate Immun ; : 1-17, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35738238

RESUMEN

Virus infections of the central nervous system (CNS) cause important diseases of humans and animals. As in other tissues, innate antiviral responses mediated by type I interferons (IFNs) are crucially important in controlling CNS virus infections. The maturity of neuronal populations is an established critical factor determining the outcome of CNS virus infection. Using primary cultures of mouse cortical neurons, we investigated the relationships between neuronal maturation, type I IFN responses, and the outcome of Semliki Forest virus infection. The virus replicated better, infected more cells, and produced higher titres of infectious viruses in immature neurons. Complete transcriptome analysis demonstrated that resting immature neurons have low transcriptional competence to mount antiviral responses. They had no detectable transcription of the genes Ddx58 and Ifih1, which encode key RNA virus cytoplasmic sensors RIG-I and MDA5, and very low expression of genes encoding key regulators of associated signalling pathways. Upon infection, immature neurons failed to mount an antiviral response as evidenced by their failure to produce chemokines, IFNs, and other cytokines. Treatment of immature neurons with exogenous IFNß prior to infection resulted in antiviral responses and lower levels of virus replication and infectious virus production. In contrast, resting mature neurons generated a robust antiviral response. This was augmented by pretreatment with IFNß. Infection of mature neurons derived from IFNAR-/- mice did not make an antiviral response and replicated virus to high levels.

10.
Virol J ; 18(1): 251, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906166

RESUMEN

BACKGROUND: The uncontrollable spread of Zika virus (ZIKV) in the Americas during 2015-2017, and its causal link to microcephaly in newborns and Guillain-Barré syndrome in adults, led the World Health Organisation to declare it a global public health emergency. One of the most notable features of ZIKV pathogenesis was the ability of the virus to pass the placental barrier to infect the growing foetus. This pathogenic trait had not been observed previously for medically important flaviviruses, including dengue and yellow fever viruses. METHODS: In this study we evaluated the replication kinetics of ZIKV and the related encephalitic flavivirus West Nile strain Kunjin virus (WNVKUN) in early-term placental cell lines. RESULTS: We have observed that WNVKUN in fact replicates with a greater rate and to higher titres that ZIKV in these cell lines. CONCLUSIONS: These results would indicate the potential for all flaviviruses to replicate in placental tissue but it is the ability to cross the placenta itself that is the restrictive factor in the clinical progression and presentation of congenital Zika syndrome.


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Línea Celular , Femenino , Humanos , Recién Nacido , Cinética , Placenta/patología , Embarazo
12.
PLoS Pathog ; 17(8): e1009800, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34437657

RESUMEN

Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNß production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNß-promoter activity, whereas all six genes induced a collapse in IFNß mRNA levels, corresponding with suppressed IFNß protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.


Asunto(s)
Interferón beta/metabolismo , SARS-CoV-2/inmunología , Proteínas Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Chlorocebus aethiops , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Interferón beta/genética , Interferón beta/farmacología , SARS-CoV-2/efectos de los fármacos , Factor de Transcripción STAT1/metabolismo , Células Vero , Proteínas Virales/genética
13.
mSphere ; : e0031321, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34133201

RESUMEN

The COVID-19 pandemic has impacted and enforced significant restrictions within our societies, including the attendance of public and professional athletes in gyms. Liquid chalk is a commonly used accessory in gyms and is comprised of magnesium carbonate and alcohol that quickly evaporates on the hands to leave a layer of dry chalk. We investigated whether liquid chalk is an antiseptic against highly pathogenic human viruses, including SARS-CoV-2, influenza virus, and noroviruses. Chalk was applied before or after virus, inoculum and recovery of infectious virus was determined to mimic the use in the gym. We observed that addition of chalk before or after virus contact led to a significant reduction in recovery of infectious SARS-CoV-2 and influenza virus but had little impact on norovirus. These observations suggest that the use and application of liquid chalk can be an effective and suitable antiseptic for major sporting events, such as the Olympic Games. IMPORTANCE To restrict the potential transmission and infectivity of SARS-CoV-2, the use of liquid chalk has been a requirement in an active gym setting. However, its effectiveness has not been scientifically proven. Here, we show that the application of liquid chalk before or after virus inoculum significantly impacts recovery of infectious SARS-CoV-2 and influenza viruses but not noroviruses. Thus, our study has shown that the implementation and application of liquid chalk in communal social gym settings is effective in reducing the infectivity of respiratory viruses, and this supports the use of liquid chalk in major sporting events to restrict the impact of COVID-19 on our communities.

14.
Nat Commun ; 12(1): 3431, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103499

RESUMEN

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that despite the large size of the viral RNA genome (~30 kb), infectious full-length cDNA is readily assembled in vitro by a circular polymerase extension reaction (CPER) methodology without the need for technically demanding intermediate steps. Overlapping cDNA fragments are generated from viral RNA and assembled together with a linker fragment containing CMV promoter into a circular full-length viral cDNA in a single reaction. Transfection of the circular cDNA into mammalian cells results in the recovery of infectious SARS-CoV-2 virus that exhibits properties comparable to the parental virus in vitro and in vivo. CPER is also used to generate insect-specific Casuarina virus with ~20 kb genome and the human pathogens Ross River virus (Alphavirus) and Norovirus (Calicivirus), with the latter from a clinical sample. Additionally, reporter and mutant viruses are generated and employed to study virus replication and virus-receptor interactions.


Asunto(s)
Genética Inversa , SARS-CoV-2/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Chlorocebus aethiops , Culicidae/virología , Furina/metabolismo , Genoma Viral , Células HEK293 , Humanos , Ratones , Mutación/genética , Células 3T3 NIH , Reacción en Cadena de la Polimerasa , Células RAW 264.7 , Receptores Virales/metabolismo , Células Vero , Proteínas Virales/química , Replicación Viral
15.
Front Cell Dev Biol ; 9: 655606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055786

RESUMEN

Flavivirus replication is intimately associated with re-organized cellular membranes. These virus-induced changes in membrane architecture form three distinct membranous "organelles" that have specific functions during the flavivirus life cycle. One of these structures is the replication complex in which the flaviviral RNA is replicated to produce progeny genomes. We have previously observed that this process is strictly dependent on cellular cholesterol. In this study we have identified a putative cholesterol recognition/interaction amino acid consensus (CRAC) motif within the West Nile virus strain Kunjin virus (WNVKUN) NS4A protein. Site-directed mutagenesis of this motif within a WNVKUN infectious clone severely attenuated virus replication and the capacity of the mutant viruses to form the replication complex. Replication of the mutant viruses also displayed reduced co-localization with cellular markers recruited to replication sites during wild-type virus replication. In addition, we observed that the mutant viruses were significantly impaired in their ability to remodel cytoplasmic membranes. However, after extensive analysis we are unable to conclusively reveal a role for the CRAC motif in direct cholesterol binding to NS4A, suggesting additional complex lipid-protein and protein-protein interactions. We believe this study highlights the crucial role for this region within NS4A protein in recruitment of cellular and viral proteins to specialized subdomains on membrane platforms to promote efficient virus replication.

16.
Virology ; 559: 131-144, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866234

RESUMEN

The involvement of the nucleus during flavivirus infection has been observed in only a small number of cases and can be limited to primarily two viral proteins; the structural protein C and the RNA polymerase NS5. Previously we observed that by blocking nuclear transport, WNV strain Kunjin (WNVKUN) replication is severely affected and through mutation of the identified NLS in WNVKUN NS5 protein. In this study, we interrogated the potential nuclear functions of WNVKUN NS5 has on the host transcriptome, by means of RNA sequencing (RNAseq). In a direct comparison between wild type and mutant NS5, it can also be determined that the nuclear translocation of NS5 results in a significant down-regulation of host genes involved in the innate immune response. When compared to published RNAseq data from WNV infection, many of these genes were overlapping indicting the role of NS5 induced transcription during infection.


Asunto(s)
Núcleo Celular/virología , Expresión Génica , Interacciones Microbiota-Huesped/genética , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/química , Regulación hacia Abajo , Células HEK293 , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Innata/genética , Señales de Localización Nuclear , Transporte de Proteínas , Análisis de Secuencia de ARN , Regulación hacia Arriba , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/metabolismo
17.
FEMS Microbiol Rev ; 45(4)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33512504

RESUMEN

Lipid droplets (LDs) contribute to key pathways important for the physiology and pathophysiology of cells. In a homeostatic view, LDs regulate the storage of neutral lipids, protein sequestration, removal of toxic lipids and cellular communication; however, recent advancements in the field show these organelles as essential for various cellular stress response mechanisms, including inflammation and immunity, with LDs acting as hubs that integrate metabolic and inflammatory processes. The accumulation of LDs has become a hallmark of infection, and is often thought to be virally driven; however, recent evidence is pointing to a role for the upregulation of LDs in the production of a successful immune response to viral infection. The fatty acids housed in LDs are also gaining interest due to the role that these lipid species play during viral infection, and their link to the synthesis of bioactive lipid mediators that have been found to have a very complex role in viral infection. This review explores the role of LDs and their subsequent lipid mediators during viral infections and poses a paradigm shift in thinking in the field, whereby LDs may play pivotal roles in protecting the host against viral infection.


Asunto(s)
Gotas Lipídicas , Virosis , Homeostasis , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Lípidos
18.
Proc Natl Acad Sci U S A ; 117(39): 24475-24483, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913052

RESUMEN

Wolbachia-infected mosquitoes are refractory to flavivirus infections, but the role of lipids in Wolbachia-mediated virus blocking remains to be elucidated. Here, we use liquid chromatography mass spectrometry to provide a comprehensive picture of the lipidome of Aedes aegypti (Aag2) cells infected with Wolbachia only, either dengue or Zika virus only, and Wolbachia-infected Aag2 cells superinfected with either dengue or Zika virus. This approach identifies a class of lipids, acyl-carnitines, as being down-regulated during Wolbachia infection. Furthermore, treatment with an acyl-carnitine inhibitor assigns a crucial role for acyl-carnitines in the replication of dengue and Zika viruses. In contrast, depletion of acyl-carnitines increases Wolbachia density while addition of commercially available acyl-carnitines impairs Wolbachia production. Finally, we show an increase in flavivirus infection of Wolbachia-infected cells with the addition of acyl-carnitines. This study uncovers a previously unknown role for acyl-carnitines in this tripartite interaction that suggests an important and broad mechanism that underpins Wolbachia-mediated pathogen blocking.


Asunto(s)
Aedes/microbiología , Aedes/virología , Carnitina/metabolismo , Wolbachia/fisiología , Virus Zika/fisiología , Aedes/química , Aedes/metabolismo , Animales , Carnitina/química , Femenino , Mosquitos Vectores/química , Mosquitos Vectores/metabolismo , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología
19.
Viruses ; 12(6)2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-32517260

RESUMEN

The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2-5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on "Successfully transitioning from post-doc to lab head", winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia.


Asunto(s)
Virología/organización & administración , Australia , Distinciones y Premios , Procesos de Grupo , Sociedades Científicas
20.
Commun Biol ; 3(1): 223, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385344

RESUMEN

The disassembly of apoptotic cells into small membrane-bound vesicles termed apoptotic bodies (ApoBDs) is a hallmark of apoptosis; however, the functional significance of this process is not well defined. We recently discovered a new membrane protrusion (termed beaded apoptopodia) generated by apoptotic monocytes which fragments to release an abundance of ApoBDs. To investigate the function of apoptotic monocyte disassembly, we used influenza A virus (IAV) infection as a proof-of-concept model, as IAV commonly infects monocytes in physiological settings. We show that ApoBDs generated from IAV-infected monocytes contained IAV mRNA, protein and virions and consequently, could facilitate viral propagation in vitro and in vivo, and induce a robust antiviral immune response. We also identified an antipsychotic, Haloperidol, as an unexpected inhibitor of monocyte cell disassembly which could impair ApoBD-mediated viral propagation under in vitro conditions. Together, this study reveals a previously unrecognised function of apoptotic monocyte disassembly in the pathogenesis of IAV infections.


Asunto(s)
Vesículas Extracelulares/virología , Virus de la Influenza A/fisiología , Monocitos/virología , Antivirales/farmacología , Haloperidol/farmacología , Virus de la Influenza A/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA