Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Pediatr Neurosurg ; : 1-12, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159611

RESUMEN

INTRODUCTION: Rubinstein-Taybi syndrome (RTS) is a rare genetic condition with a distinctive set of physical features. This case series reports a single institutional experience of RTS cases, highlighting the role of neurosurgery in the comprehensive management of RTS patients. METHODS: A retrospective review of patients with genetically confirmed RTS presenting between 2010 and 2023 at Children's Hospital of Pittsburgh was performed. Patient demographics, genetic profile, clinical symptoms, radiographic characteristics, and neurosurgical management were recorded for all patients. RESULTS: Twenty-one patients (13 females, 8 males) aged 0 to 22 years presented for formal genetic counseling and diagnosis. Twenty patients (95%) had CREBBP pathogenic variants (RTS type 1), and 1 patient (5%) had EP300 pathogenic variants (RTS type 2). Ten patients (48%) had a low-lying conus medullaris, and 3 patients (30%) underwent subsequent spinal cord detethering. Four patients (19%) had a Chiari malformation, and three (75%) underwent Chiari decompression surgeries. One patient (5%) had Chiari-associated syringomyelia. CONCLUSIONS: RTS patients have an increased rate of tethered cord syndrome requiring detethering. The incidence of symptomatic Chiari I malformation requiring decompression has not been previously reported. The RTS series presented here demonstrates a high incidence of symptomatic Chiari I malformation in addition to tethered cord syndrome.

3.
Brain ; 146(8): 3273-3288, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757831

RESUMEN

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Asunto(s)
Distonía , Trastornos Distónicos , Malformaciones del Sistema Nervioso , Masculino , Humanos , Estudios Transversales , Mutación/genética , Fenotipo , Distonía/genética , Trastornos Distónicos/genética , Chaperonas Moleculares/genética
4.
Genet Med ; 25(3): 100348, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36571464

RESUMEN

PURPOSE: RAS genes (HRAS, KRAS, and NRAS) are commonly found to be mutated in cancers, and activating RAS variants are also found in disorders of somatic mosaicism (DoSM). A survey of the mutational spectrum of RAS variants in DoSM has not been performed. METHODS: A total of 938 individuals with suspected DoSM underwent high-sensitivity clinical next-generation sequencing-based testing. We investigated the mutational spectrum and genotype-phenotype associations of mosaic RAS variants. RESULTS: In this article, we present a series of individuals with DoSM with RAS variants. Classic hotspots, including Gly12, Gly13, and Gln61 constituted the majority of RAS variants observed in DoSM. Furthermore, we present 12 individuals with HRAS and KRAS in-frame duplication/insertion (dup/ins) variants in the switch II domain. Among the 18.3% individuals with RAS in-frame dup/ins variants, clinical findings were mainly associated with vascular malformations. Hotspots were associated with a broad phenotypic spectrum, including vascular tumors, vascular malformations, nevoid proliferations, segmental overgrowth, digital anomalies, and combinations of these. The median age at testing was higher and the variant allelic fraction was lower in individuals with in-frame dup/ins variants than those in individuals with mosaic RAS hotspots. CONCLUSION: Our work provides insight into the allelic and clinical heterogeneity of mosaic RAS variants in nonmalignant conditions.


Asunto(s)
Mosaicismo , Malformaciones Vasculares , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Alelos , Malformaciones Vasculares/genética
5.
J Clin Invest ; 132(19)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35917186

RESUMEN

Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. An excess of likely gene-disruptive (LGD) mutations in GIGYF1 was implicated in ASD. Here, we report that GIGYF1 is the second-most mutated gene among known ASD high-confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Among individuals with ASD, cognitive impairments were less likely in those with GIGYF1 LGD variants relative to those with other high-confidence gene mutations. Using a Gigyf1 conditional KO mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction in the number of upper-layer cortical neurons, accompanied by a decrease in proliferation and increase in differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to the cell surface. KO of GIGYF1 led to a decreased level of IGF-1R on the cell surface, disrupting the IGF-1R/ERK signaling pathway. In summary, our findings show that GIGYF1 is a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behavior, likely through interference with IGF-1R/ERK signaling pathway.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Ratones , Neuronas/metabolismo , Fenotipo , Transducción de Señal
6.
Psychiatr Genet ; 32(5): 171-177, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35837682

RESUMEN

INTRODUCTION: The complex structure of the chromosome 2q12.3-q13 region provides a high chance of recombination events between various low copy repeats (LCRs). Copy number variants (CNV) in this region are present in both healthy populations and individuals affected with developmental delay, autism and congenital anomalies. Variable expressivity, reduced penetrance and limited characterization of the affected genes have complicated the classification of the CNVs clinical significance. METHODS: Chromosomal microarray analysis data were reviewed for 10 298 patients with neurodevelopmental disorders referred to the UPMC Medical Genetics and Genomics Laboratories. A genotype-phenotype correlation was performed among the patients harboring the 2q12.3-q13 CNVs with overlapping genomic intervals. RESULTS: We identified 17 (1 in ~600) individuals with rare CNVs in the 2q12.3-q13 region, including nine patients with deletions, seven individuals with duplications and one patient who had both a deletion and a duplication. Likely pathogenic CNVs with the breakpoints between LCRs encompassing the potential dosage-sensitive genes BCL2L11, BUB1, FBLN7 and TMEM87B were the most common. CNVs were also observed between LCRs surrounding the RANBP2 and LIMS1 genes. CONCLUSION: Our study provides evidence for pathogenic CNV hotspots within the chromosome 2q12.3-q13 region. We suggest CNV classification based on the affected interval and the involvement of potential dosage-sensitive genes in these patients.


Asunto(s)
Variaciones en el Número de Copia de ADN , Trastornos del Neurodesarrollo , Cromosomas , Variaciones en el Número de Copia de ADN/genética , Estudios de Asociación Genética , Genómica , Humanos , Trastornos del Neurodesarrollo/genética
7.
Genet Med ; 24(2): 364-373, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906496

RESUMEN

PURPOSE: BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS: We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS: We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION: We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.


Asunto(s)
Anomalías Múltiples , Deformidades Congénitas de la Mano , Micrognatismo , Anomalías Múltiples/genética , Actinas/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Exoma/genética , Deformidades Congénitas de la Mano/genética , Humanos , Micrognatismo/genética , Estudios Retrospectivos
8.
Am J Med Genet A ; 188(3): 970-977, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862840

RESUMEN

Nemaline Myopathy (NM) is a disorder of skeletal muscles caused by mutations in sarcomere proteins and characterized by accumulation of microscopic rod or thread-like structures (nemaline bodies) in skeletal muscles. Patients diagnosed with both NM and infantile cardiomyopathy are very rare. A male infant presented, within the first few hours of life, with severe dilated cardiomyopathy, biventricular dysfunction and left ventricular noncompaction. A muscle biopsy on the 8th day of life from the right sternocleidomastoid muscle identified nemaline rods. Whole exome sequencing identified a c.1288 delT (homozygous pathogenic variant) in the CAP2 gene (NM_006366), yielding a CAP2 protein (NP_006357.1) with a p.C430fs. Both parents were heterozygous for the same variant but have no history of heart or muscle disease. Analysis of patient derived fibroblasts and cardiomyocytes derived from induced pluripotent stem cells confirmed the p.C430fs mutation (pathogenic variant), which appears to cause loss of both CAP2 protein and mRNA. The CAP2 gene encodes cyclase associated protein 2, an actin monomer binding and filament depolymerizing protein and CAP2 knockout mice develop severe dilated cardiomyopathy and muscle weakness. The patient underwent a heart transplant at 1 year of age. Heart tissue explanted at that time also showed nemaline rods and additionally disintegration of the myofibrillar structure. Other extra cardiac concerns include mild hypotonia, atrophic and widened scarring. This is the first description of a patient presenting with nemaline myopathy associated with a pathogenic variant of CAP2.


Asunto(s)
Cardiomiopatía Dilatada , Miopatías Nemalínicas , Proteínas Adaptadoras Transductoras de Señales/genética , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Homocigoto , Humanos , Recién Nacido , Masculino , Proteínas de la Membrana/genética , Músculo Esquelético/patología , Mutación , Miopatías Nemalínicas/diagnóstico , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología
9.
NPJ Genom Med ; 6(1): 104, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876591

RESUMEN

The histone H3 variant H3.3, encoded by two genes H3-3A and H3-3B, can replace canonical isoforms H3.1 and H3.2. H3.3 is important in chromatin compaction, early embryonic development, and lineage commitment. The role of H3.3 in somatic cancers has been studied extensively, but its association with a congenital disorder has emerged just recently. Here we report eleven de novo missense variants and one de novo stop-loss variant in H3-3A (n = 6) and H3-3B (n = 6) from Baylor Genetics exome cohort (n = 11) and Matchmaker Exchange (n = 1), of which detailed phenotyping was conducted for 10 individuals (H3-3A = 4 and H3-3B = 6) that showed major phenotypes including global developmental delay, short stature, failure to thrive, dysmorphic facial features, structural brain abnormalities, hypotonia, and visual impairment. Three variant constructs (p.R129H, p.M121I, and p.I52N) showed significant decrease in protein expression, while one variant (p.R41C) accumulated at greater levels than wild-type control. One H3.3 variant construct (p.R129H) was found to have stronger interaction with the chaperone death domain-associated protein 6.

10.
Epilepsia ; 62(7): e103-e109, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34041744

RESUMEN

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.


Asunto(s)
Discapacidades del Desarrollo/genética , Epilepsia Generalizada/genética , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Discapacidades del Desarrollo/fisiopatología , Epilepsias Mioclónicas/diagnóstico , Epilepsias Mioclónicas/etiología , Epilepsias Mioclónicas/genética , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/etiología , Exoma/genética , Femenino , Variación Genética , Humanos , Lactante , Discapacidad Intelectual/etiología , Discapacidad Intelectual/genética , Masculino , Mutación/genética , Fenotipo , Estado Epiléptico/diagnóstico , Estado Epiléptico/etiología , Estado Epiléptico/genética , Adulto Joven
11.
Mol Genet Genomic Med ; 9(4): e1647, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33666368

RESUMEN

BACKGROUND: Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by early-onset non-progressive involuntary movements. Although NKX2-1 mutations or deletions are the cause of BHC, some BHC families do not have pathogenic alterations in the NKX2-1 gene, indicating that mutations of non-coding regulatory elements of NKX2-1 may also play a role. METHODS AND RESULTS: By using whole-genome microarray analysis, we identified a 117 Kb founder deletion in three apparently unrelated BHC families that were negative for NKX2-1 sequence variants. Targeted next generation sequencing analysis confirmed the deletion and showed that it was part of a complex local genomic rearrangement. In addition, we also detected a 648 Kb de novo deletion in an isolated BHC case. Both deletions are located downstream from NKX2-1 on chromosome 14q13.2-q13.3 and share a 33 Kb smallest region of overlap with six previously reported cases. This region has no gene but contains multiple evolutionarily highly conserved non-coding sequences. CONCLUSION: We propose that the deletion of potential regulatory elements necessary for NKX2-1 expression in this critical region is responsible for BHC phenotype in these patients, and this is a novel disease-causing mechanism for BHC.


Asunto(s)
Corea/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factor Nuclear Tiroideo 1/genética , Adolescente , Niño , Corea/patología , Cromosomas Humanos Par 14/genética , Secuencia Conservada , Femenino , Humanos , Masculino , Linaje , Eliminación de Secuencia
12.
J Pediatr Genet ; 10(1): 81-84, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33552646

RESUMEN

De novo heterozygous mutations in the KAT6A gene give rise to a distinct intellectual disability syndrome, with features including speech delay, cardiac anomalies, craniofacial dysmorphisms, and craniosynostosis. Here, we reported a 16-year-old girl with a novel pathogenic variant of the KAT6A gene. She is the first case to possess pancraniosynostosis, a rare suture fusion pattern, affecting all her major cranial sutures. The diagnosis of KAT6A syndrome is established via recognition of its inherent phenotypic features and the utilization of whole exome sequencing. Thorough craniofacial evaluation is imperative, craniosynostosis may require operative intervention, the delay of which may be detrimental.

13.
Am J Hum Genet ; 108(3): 502-516, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33596411

RESUMEN

Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals with truncating variants in SPEN to define a neurodevelopmental disorder presenting with features that overlap considerably with those of proximal del1p36 syndrome. The clinical profile of this disease includes developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI, especially in females. SPEN also emerges as a relevant gene for del1p36 syndrome by co-expression analyses. Finally, we show that haploinsufficiency of SPEN is associated with a distinctive DNA methylation episignature of the X chromosome in affected females, providing further evidence of a specific contribution of the protein to the epigenetic control of this chromosome, and a paradigm of an X chromosome-specific episignature that classifies syndromic traits. We conclude that SPEN is required for multiple developmental processes and SPEN haploinsufficiency is a major contributor to a disorder associated with deletions centromeric to the previously established 1p36 critical regions.


Asunto(s)
Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos X/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/genética , Adolescente , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Niño , Preescolar , Deleción Cromosómica , Trastornos de los Cromosomas/fisiopatología , Metilación de ADN/genética , Epigénesis Genética/genética , Femenino , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Masculino , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Adulto Joven
14.
Clin Genet ; 98(6): 577-588, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33009833

RESUMEN

In clinical exome/genome sequencing, the American College of Medical Genetics and Genomics (ACMG) recommends reporting of secondary findings unrelated to a patient's phenotype when pathogenic single-nucleotide variants (SNVs) are observed in one of 59 genes associated with a life-threatening, medically actionable condition. Little is known about the incidence and sensitivity of chromosomal microarray analysis (CMA) for detection of pathogenic copy number variants (CNVs) comprising medically-actionable genes. Clinical CMA has been performed on 8865 individuals referred for molecular cytogenetic testing. We retrospectively reviewed the CMA results to identify patients with CNVs comprising genes included in the 59-ACMG list of secondary findings. We evaluated the clinical significance of these CNVs in respect to pathogenicity, phenotypic manifestations, and heritability. We identified 23 patients (0.26%) with relevant CNV either deletions comprising the entire gene or intragenic alterations involving one or more secondary findings genes. A number of patients and/or their family members with pathogenic CNVs manifest or expected to develop an anticipated clinical phenotype and would benefit from preventive management similar to the patients with pathogenic SNVs. To improve patients' care standardization should apply to reporting of both sequencing and CNVs obtained via clinical genome-wide analysis, including chromosomal microarray and exome/genome sequencing.


Asunto(s)
Análisis Citogenético , Variaciones en el Número de Copia de ADN/genética , Secuenciación del Exoma/tendencias , Genómica , Adolescente , Adulto , Niño , Preescolar , Exoma/genética , Femenino , Pruebas Genéticas/tendencias , Genética Médica/tendencias , Genoma Humano , Humanos , Lactante , Masculino , Análisis por Micromatrices/tendencias , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
15.
Hum Mutat ; 41(12): 2094-2104, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32935419

RESUMEN

KIF1A is a molecular motor for membrane-bound cargo important to the development and survival of sensory neurons. KIF1A dysfunction has been associated with several Mendelian disorders with a spectrum of overlapping phenotypes, ranging from spastic paraplegia to intellectual disability. We present a novel pathogenic in-frame deletion in the KIF1A molecular motor domain inherited by two affected siblings from an unaffected mother with apparent germline mosaicism. We identified eight additional cases with heterozygous, pathogenic KIF1A variants ascertained from a local data lake. Our data provide evidence for the expansion of KIF1A-associated phenotypes to include hip subluxation and dystonia as well as phenotypes observed in only a single case: gelastic cataplexy, coxa valga, and double collecting system. We review the literature and suggest that KIF1A dysfunction is better understood as a single neuromuscular disorder with variable involvement of other organ systems than a set of discrete disorders converging at a single locus.


Asunto(s)
Genes Dominantes , Predisposición Genética a la Enfermedad , Cinesinas/genética , Mutación/genética , Niño , Preescolar , Familia , Femenino , Humanos , Masculino , Linaje , Perú , Fenotipo
16.
Ophthalmic Genet ; 41(6): 650-655, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32838606

RESUMEN

BACKGROUND: Pathogenic variants in DYRK1A are associated with DYRK1A-related intellectual disability syndrome (DIDS). Common features of this diagnosis include microcephaly, intellectual disability, speech impairment, and distinct facial features. Reported ocular features include deep-set eyes, myopia, and strabismus. We present a case of DYRK1A-related intellectual disability syndrome with ocular findings of albinism and explore the possible pathogenesis of this previously unreported manifestation. MATERIALS AND METHODS: This is a single, retrospective case report of a child with DIDS who underwent an ophthalmic exam including detailed visual electrophysiology. Results: A 21-month-old female with microcephaly, failure to thrive, language delay, cleft palate, and cardiac defects had an ophthalmic exam showing myopia, strabismus, a hypopigmented fundus and crossed asymmetry on visual evoked potential (VEP), consistent with ocular findings of albinism. Whole exome sequencing identified a pathogenic DYRK1A variant; no albinism gene variants were reported. Her constellation of features is consistent with a diagnosis of DYRK1A-related intellectual disability syndrome; however, ocular features of albinism have not previously been reported in this condition. CONCLUSIONS: This is, to the best of our knowledge, the first report of ocular findings of albinism in a case of DYRK1A-related intellectual disability syndrome. We propose that ocular albinism is a novel ocular phenotype of DYRK1A-related disease. Ophthalmic exams in patients with this diagnosis should include thorough evaluation for ocular albinism, including VEPs.


Asunto(s)
Albinismo/patología , Haploinsuficiencia , Discapacidad Intelectual/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Albinismo/complicaciones , Albinismo/genética , Potenciales Evocados Visuales , Femenino , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Estudios Retrospectivos , Síndrome , Quinasas DyrK
17.
Am J Med Genet A ; 182(6): 1426-1437, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32275123

RESUMEN

Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is an autosomal dominant neurodevelopmental disorder caused by loss-of-function variants in NR2F1 and characterized by visual impairment, developmental delay, and intellectual disability. Here we report 18 new cases, provide additional clinical information for 9 previously reported individuals, and review an additional 27 published cases to present a total of 54 patients. Among these are 22 individuals with point mutations or in-frame deletions in the DNA-binding domain (DBD), and 32 individuals with other types of variants including whole-gene deletions, nonsense and frameshift variants, and point mutations outside the DBD. We corroborate previously described clinical characteristics including developmental delay, intellectual disability, autism spectrum disorder diagnoses/features thereof, cognitive/behavioral anomalies, hypotonia, feeding difficulties, abnormal brain MRI findings, and seizures. We also confirm a vision phenotype that includes optic nerve hypoplasia, optic atrophy, and cortical visual impairment. Additionally, we expand the vision phenotype to include alacrima and manifest latent nystagmus (fusional maldevelopment), and we broaden the behavioral phenotypic spectrum to include a love of music, an unusually good long-term memory, sleep difficulties, a high pain tolerance, and touch sensitivity. Furthermore, we provide additional evidence for genotype-phenotype correlations, specifically supporting a more severe phenotype associated with DBD variants.


Asunto(s)
Factor de Transcripción COUP I/genética , Discapacidad Intelectual/genética , Atrofias Ópticas Hereditarias/genética , Convulsiones/genética , Codón sin Sentido/genética , Proteínas de Unión al ADN , Femenino , Mutación del Sistema de Lectura/genética , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/fisiopatología , Masculino , Mutación/genética , Atrofias Ópticas Hereditarias/complicaciones , Atrofias Ópticas Hereditarias/fisiopatología , Mutación Puntual/genética , Convulsiones/complicaciones , Convulsiones/fisiopatología
18.
Am J Med Genet A ; 182(4): 813-822, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31913574

RESUMEN

Children or adults with mosaic trisomy 12 diagnosed postnatally are extremely rare. Only a small number of patients with this mosaicism have been reported in the literature. The clinical manifestation of mosaic trisomy 12 is variable, ranging from mild developmental delay to severe congenital anomaly and neonatal death. The trisomy 12 cells are not usually able to be detected by phytohemagglutinin stimulated peripheral blood chromosome analysis. The variability of phenotypes and the limited number of patients with this anomaly pose a challenge to predict the clinical outcomes. In this study, we present the phenotypes and laboratory findings in four patients and review the 11 previously reported patients with mosaic trisomy 12 diagnosed postnatally, as well as 11 patients with mosaic trisomy 12 diagnosed prenatally. The findings of this study provide useful information for laboratory diagnosis and clinical management of these patients.


Asunto(s)
Anomalías Múltiples/diagnóstico , Trastornos de los Cromosomas/diagnóstico , Anomalías Congénitas/diagnóstico , Discapacidades del Desarrollo/diagnóstico , Trisomía/genética , Anomalías Múltiples/genética , Niño , Preescolar , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 12/genética , Anomalías Congénitas/genética , Discapacidades del Desarrollo/genética , Femenino , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Masculino , Mosaicismo , Fenotipo , Diagnóstico Prenatal
20.
Biol Psychiatry ; 87(2): 100-112, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443933

RESUMEN

BACKGROUND: The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative. METHODS: We used clinically recommended guidelines to collect and interrogate the pathogenicity of 44 USP9X variants associated with neurodevelopmental disorders in males. Functional studies in patient-derived cell lines and mice were used to determine mechanisms of pathology. RESULTS: Twelve missense variants showed strong evidence of pathogenicity. We define a characteristic phenotype of the central nervous system (white matter disturbances, thin corpus callosum, and widened ventricles); global delay with significant alteration of speech, language, and behavior; hypotonia; joint hypermobility; visual system defects; and other common congenital and dysmorphic features. Comparison of in silico and phenotypical features align additional variants of unknown significance with likely pathogenicity. In support of partial loss-of-function mechanisms, using patient-derived cell lines, we show loss of only specific USP9X substrates that regulate neurodevelopmental signaling pathways and a united defect in transforming growth factor ß signaling. In addition, we find correlates of the male phenotype in Usp9x brain-specific knockout mice, and further resolve loss of hippocampal-dependent learning and memory. CONCLUSIONS: Our data demonstrate the involvement of USP9X variants in a distinctive neurodevelopmental and behavioral syndrome in male subjects and identify plausible mechanisms of pathogenesis centered on disrupted transforming growth factor ß signaling and hippocampal function.


Asunto(s)
Discapacidades del Desarrollo , Discapacidad Intelectual , Factor de Crecimiento Transformador beta , Animales , Discapacidades del Desarrollo/genética , Femenino , Haploinsuficiencia , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Fenotipo , Transducción de Señal , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA