Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Front Plant Sci ; 11: 951, 2020.
Article En | MEDLINE | ID: mdl-32670339

Seed treatments with antagonistic bacteria could reduce the severity of crown and root rot diseases in wheat crops. The objective of this study was to evaluate the potential antagonistic activity of a bacterial consortium of three Chilean strains of Pseudomonas protegens against the wheat crown and root rot pathogens Gaeumannomyces graminis var. tritici, Rhizoctonia cerealis, and Fusarium culmorum. Two field experiments were carried out on artificially infested soil during two consecutive seasons (2016-2017 and 2017-2018) in an Andisol soil of southern Chile. Control treatments (not inoculated with fungi) were also included. Each treatment included a seed treatment of spring wheat cv. Pantera-INIA with and without the bacterial consortium. Both phytosanitary damage (incidence and severity) and agronomic components were evaluated. Bacterial populations with the phlD+ gene in the wheat plant rhizosphere during anthesis state (Z6) were also quantified. In both seasons, infection severity decreased by an average of 16.8% in seeds treated with P. protegens consortium, while yield components such as spikes m-1 and number of grains per spike increased. The use of antagonistic bacteria resulted in a total yield increase only during the first experimental season (P < 0.05). In general, accumulated rainfall influenced the antagonistic effect of the consortium of P. protegens strains, accounting for the differences observed between the two seasons. The results suggest that this P. protegens consortium applied on seeds can promote plant growth and protect wheat crops against crown and root rot pathogens in Southern Chile under field conditions.

2.
Genome Biol Evol ; 9(12): 3282-3296, 2017 12 01.
Article En | MEDLINE | ID: mdl-29177504

Recent disease outbreaks caused by (re-)emerging plant pathogens have been associated with expansions in pathogen geographic distribution and increased virulence. For example, in the past two decades' wheat yellow (stripe) rust, Puccinia striiformis f. sp. tritici, has seen the emergence of new races that are adapted to warmer temperatures, have expanded virulence profiles, and are more aggressive than previous races, leading to wide-scale epidemics. Here, we used field-based genotyping to generate high-resolution data on P. striiformis genetics and carried out global population analysis. We also undertook comparative analysis of the 2014 and 2013 UK populations and assessed the temporal dynamics and host specificity of distinct pathogen genotypes. Our analysis revealed that P. striiformis lineages recently detected in Europe are extremely diverse and in fact similar to globally dispersed populations. In addition, we identified a considerable shift in the UK P. striiformis population structure including the first identification of one infamous race known as Kranich. Next, by establishing the genotype of both the pathogen and host within a single infected field sample, we uncovered evidence for varietal specificity for genetic groups of P. striiformis. Finally, we found potential seasonal specificity for certain genotypes of the pathogen with several lineages identified only in samples collected in late spring and into the summer, whereas one lineage was identified throughout the wheat growing season. Our discovery of which wheat varieties are susceptible to which specific P. striiformis isolates, and when those isolates are prevalent throughout the year, represents a powerful tool for disease management.


Basidiomycota/classification , Basidiomycota/genetics , Genomics/methods , Host Specificity , Plant Diseases/microbiology , Triticum/microbiology , Disease Outbreaks , Genome, Fungal , Genotype , High-Throughput Nucleotide Sequencing , Phylogeny , Seasons , Virulence
...