Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(6): e2317756121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38300868

RESUMEN

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Hiperfosfatemia , Humanos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Conductos Biliares Intrahepáticos/metabolismo , Diarrea , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
2.
Cancer Discov ; 14(2): 240-257, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37916956

RESUMEN

PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE: Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.


Asunto(s)
Neoplasias de la Mama , Hiperinsulinismo , Humanos , Femenino , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Microscopía por Crioelectrón , Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/genética , Hiperinsulinismo/tratamiento farmacológico , Hiperinsulinismo/genética , ADN
3.
Cancer Discov ; 13(10): 2150-2165, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37712569

RESUMEN

Small-molecule chemical "probes" complement the use of molecular biology techniques to explore, validate, and generate hypotheses on the function of proteins in diseases such as cancer. Unfortunately, the poor selection and use of small-molecule reagents can lead to incorrect conclusions. Here, we illustrate examples of poor chemical tools and suggest best practices for the selection, validation, and use of high-quality chemical probes in cancer research. We also note the complexity associated with tools for novel drug modalities, exemplified by protein degraders, and provide advice and resources to facilitate the independent identification of appropriate small-molecule probes by researchers. SIGNIFICANCE: Validation of biological targets and pathways will be aided by a shared understanding of the criteria of potency, selectivity, and target engagement associated with small-molecule reagents ("chemical probes") that enable that work. Interdisciplinary collaboration between cancer biologists, medicinal chemists, and chemical biologists and the awareness of available resources will reduce misleading data generation and interpretation, strengthen data robustness, and improve productivity in academic and industrial research.


Asunto(s)
Neoplasias , Investigación , Humanos , Proteínas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
4.
J Med Chem ; 66(14): 9297-9312, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37403870

RESUMEN

Within druggable target space, new small-molecule modalities, particularly covalent inhibitors and targeted degraders, have expanded the repertoire of medicinal chemists. Molecules with such modes of action have a large potential not only as drugs but also as chemical probes. Criteria have previously been established to describe the potency, selectivity, and properties of small-molecule probes that are qualified to enable the interrogation and validation of drug targets. These definitions have been tailored to reversibly acting modulators but fall short in their applicability to other modalities. While initial guidelines have been proposed, we delineate here a full set of criteria for the characterization of covalent, irreversible inhibitors as well as heterobifunctional degraders ("proteolysis-targeting chimeras", or PROTACs) and molecular glue degraders. We propose modified potency and selectivity criteria compared to those for reversible inhibitors. We discuss their relevance and highlight examples of suitable probe and pathfinder compounds.


Asunto(s)
Ubiquitina-Proteína Ligasas , Proteolisis
5.
J Med Chem ; 65(7): 5288-5299, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35312319

RESUMEN

With several marketed drugs, allosteric inhibition of kinases has translated to pharmacological effects and clinical benefits comparable to those from orthosteric inhibition. However, despite much effort over more than 20 years, the number of kinase targets associated with FDA-approved allosteric drugs is limited, suggesting the challenges in identifying and validating allosteric inhibitors. Here we review the principles of allosteric inhibition, summarize the discovery of allosteric MEK1/2 and BCR-ABL1 inhibitors, and discuss the approaches to screening and demonstrating the functional activity of allosteric pocket ligands.


Asunto(s)
Proteínas de Fusión bcr-abl , Inhibidores de Proteínas Quinasas , Regulación Alostérica , Sitio Alostérico , Ligandos , Inhibidores de Proteínas Quinasas/farmacología
6.
J Med Chem ; 64(7): 3697-3706, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33591753

RESUMEN

Protein arginine methyltransferase 6 (PRMT6) catalyzes monomethylation and asymmetric dimethylation of arginine residues in various proteins, plays important roles in biological processes, and is associated with multiple cancers. To date, a highly selective PRMT6 inhibitor has not been reported. Here we report the discovery and characterization of a first-in-class, highly selective allosteric inhibitor of PRMT6, (R)-2 (SGC6870). (R)-2 is a potent PRMT6 inhibitor (IC50 = 77 ± 6 nM) with outstanding selectivity for PRMT6 over a broad panel of other methyltransferases and nonepigenetic targets. Notably, the crystal structure of the PRMT6-(R)-2 complex and kinetic studies revealed (R)-2 binds a unique, induced allosteric pocket. Additionally, (R)-2 engages PRMT6 and potently inhibits its methyltransferase activity in cells. Moreover, (R)-2's enantiomer, (S)-2 (SGC6870N), is inactive against PRMT6 and can be utilized as a negative control. Collectively, (R)-2 is a well-characterized PRMT6 chemical probe and a valuable tool for further investigating PRMT6 functions in health and disease.


Asunto(s)
Benzodiazepinonas/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Regulación Alostérica , Sitio Alostérico , Benzodiazepinonas/síntesis química , Benzodiazepinonas/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Proteína-Arginina N-Metiltransferasas/metabolismo , Estereoisomerismo
7.
ACS Med Chem Lett ; 9(7): 612-617, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30034588

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the formation of symmetric dimethylarginine in a number of nuclear and cytoplasmic proteins. Although the cellular functions of PRMT5 have not been fully unraveled, it has been implicated in a number of cellular processes like RNA processing, signal transduction, and transcriptional regulation. PRMT5 is ubiquitously expressed in most tissues and its expression has been shown to be elevated in several cancers including breast cancer, gastric cancer, glioblastoma, and lymphoma. Here, we describe the identification and characterization of a novel and selective PRMT5 inhibitor with potent in vitro and in vivo activity. Compound 1 (also called LLY-283) inhibited PRMT5 enzymatic activity in vitro and in cells with IC50 of 22 ± 3 and 25 ± 1 nM, respectively, while its diastereomer, compound 2 (also called LLY-284), was much less active. Compound 1 also showed antitumor activity in mouse xenografts when dosed orally and can serve as an excellent probe molecule for understanding the biological function of PRMT5 in normal and cancer cells.

8.
Bioorg Med Chem Lett ; 28(11): 1981-1991, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29752185

RESUMEN

A recent review of kinase inhibitors in clinical trials for brain cancer noted differences in the properties of these compounds relative to the mean property parameters associated with drugs marketed for CNS-associated conditions. However, many of these kinase drugs arose from opportunistic observations of brain activity, rather than design or flow schemes focused on optimizing CNS penetration. Thus, this digest examines kinase inhibitors that have been developed specifically for neurodegenerative indications such as Alzheimer's or Parkinson's disease, and considers design, flow scheme, and the physicochemical properties associated with compounds that have demonstrated brain penetrance.


Asunto(s)
Descubrimiento de Drogas , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Neurociencias , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química
9.
Mol Cancer Ther ; 15(10): 2344-2356, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27439478

RESUMEN

The PI3K/AKT/mTOR pathway is among the most frequently altered pathways in cancer cell growth and survival. LY3023414 is a complex fused imidazoquinolinone with high solubility across a wide pH range designed to inhibit class I PI3K isoforms and mTOR kinase. Here, we describe the in vitro and in vivo activity of LY3023414. LY3023414 was highly soluble at pH 2-7. In biochemical testing against approximately 266 kinases, LY3023414 potently and selectively inhibited class I PI3K isoforms, mTORC1/2, and DNA-PK at low nanomolar concentrations. In vitro, inhibition of PI3K/AKT/mTOR signaling by LY3023414 caused G1 cell-cycle arrest and resulted in broad antiproliferative activity in cancer cell panel screens. In vivo, LY3023414 demonstrated high bioavailability and dose-dependent dephosphorylation of PI3K/AKT/mTOR pathway downstream substrates such as AKT, S6K, S6RP, and 4E-BP1 for 4 to 6 hours, reflecting the drug's half-life of 2 hours. Of note, equivalent total daily doses of LY3023414 given either once daily or twice daily inhibited tumor growth to similar extents in multiple xenograft models, indicating that intermittent target inhibition is sufficient for antitumor activity. In combination with standard-of-care drugs, LY3023414 demonstrated additive antitumor activity. The novel, orally bioavailable PI3K/mTOR inhibitor LY3023414 is highly soluble and exhibits potent in vivo efficacy via intermittent target inhibition. It is currently being evaluated in phase I and II trials for the treatment of human malignancies. Mol Cancer Ther; 15(10); 2344-56. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Disponibilidad Biológica , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Ratones , Modelos Moleculares , Conformación Molecular , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Transducción de Señal/efectos de los fármacos , Solubilidad , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
ACS Med Chem Lett ; 7(2): 156-61, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26985291

RESUMEN

Screening of the relatively new target class, the lysine and arginine methyltransferases (MTases), presents unique challenges in the identification and confirmation of active chemical matter. Examination of high throughput screening data generated using Scintillation Proximity Assay (SPA) format for a number of protein MTase targets reveals sensitivity to both the known pan assay interference compounds (PAINS) and also other scaffolds not currently precedented as assay interferers. We find that, in general, true actives show significant selectivity within the MTase family. With the exception of slight modifications of SAM-like compounds, scaffolds that are observed frequently in multiple MTase assays should be viewed with caution and should be carefully validated before following up.

13.
J Biol Chem ; 290(22): 13641-53, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25825497

RESUMEN

SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.


Asunto(s)
Antineoplásicos/química , Benzamidas/química , Inhibidores Enzimáticos/química , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Neoplasias/enzimología , Pirrolidinas/química , Línea Celular Tumoral , Proliferación Celular , Cromatina/química , Biología Computacional , Cristalización , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética , Histonas/química , Humanos , Espectrometría de Masas , Neoplasias/tratamiento farmacológico , Péptidos/química , Desnaturalización Proteica , Proteómica , Proteína p53 Supresora de Tumor/metabolismo
14.
Mol Cancer Ther ; 13(2): 364-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24356814

RESUMEN

p38α mitogen-activated protein kinase (MAPK) is activated in cancer cells in response to environmental factors, oncogenic stress, radiation, and chemotherapy. p38α MAPK phosphorylates a number of substrates, including MAPKAP-K2 (MK2), and regulates the production of cytokines in the tumor microenvironment, such as TNF-α, interleukin-1ß (IL-1ß), IL-6, and CXCL8 (IL-8). p38α MAPK is highly expressed in human cancers and may play a role in tumor growth, invasion, metastasis, and drug resistance. LY2228820 dimesylate (hereafter LY2228820), a trisubstituted imidazole derivative, is a potent and selective, ATP-competitive inhibitor of the α- and ß-isoforms of p38 MAPK in vitro (IC(50) = 5.3 and 3.2 nmol/L, respectively). In cell-based assays, LY2228820 potently and selectively inhibited phosphorylation of MK2 (Thr334) in anisomycin-stimulated HeLa cells (at 9.8 nmol/L by Western blot analysis) and anisomycin-induced mouse RAW264.7 macrophages (IC(50) = 35.3 nmol/L) with no changes in phosphorylation of p38α MAPK, JNK, ERK1/2, c-Jun, ATF2, or c-Myc ≤ 10 µmol/L. LY2228820 also reduced TNF-α secretion by lipopolysaccharide/IFN-γ-stimulated macrophages (IC(50) = 6.3 nmol/L). In mice transplanted with B16-F10 melanoma, tumor phospho-MK2 (p-MK2) was inhibited by LY2228820 in a dose-dependent manner [threshold effective dose (TED)(70) = 11.2 mg/kg]. Significant target inhibition (>40% reduction in p-MK2) was maintained for 4 to 8 hours following a single 10 mg/kg oral dose. LY2228820 produced significant tumor growth delay in multiple in vivo cancer models (melanoma, non-small cell lung cancer, ovarian, glioma, myeloma, breast). In summary, LY2228820 is a p38 MAPK inhibitor, which has been optimized for potency, selectivity, drug-like properties (such as oral bioavailability), and efficacy in animal models of human cancer.


Asunto(s)
Imidazoles/farmacología , Neoplasias/tratamiento farmacológico , Piridinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Anisomicina/farmacología , Sitios de Unión , Western Blotting , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Imidazoles/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Ratones , Estructura Molecular , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Piridinas/química , Interferencia de ARN , Resultado del Tratamiento , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
J Biol Chem ; 285(28): 21849-57, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20444701

RESUMEN

In mammalian cells entry into and progression through mitosis are regulated by multiple mitotic kinases. How mitotic kinases interact with each other and coordinately regulate mitosis remains to be fully understood. Here we employed a chemical biology approach using selective small molecule kinase inhibitors to dissect the relationship between Cdk1 and Aurora A kinases during G(2)/M transition. We find that activation of Aurora A first occurs at centrosomes at late G(2) and is required for centrosome separation independently of Cdk1 activity. Upon entry into mitosis, Aurora A then becomes fully activated downstream of Cdk1 activation. Inactivation of Aurora A or Plk1 individually during a synchronized cell cycle shows no significant effect on Cdk1 activation and entry into mitosis. However, simultaneous inactivation of both Aurora A and Plk1 markedly delays Cdk1 activation and entry into mitosis, suggesting that Aurora A and Plk1 have redundant functions in the feedback activation of Cdk1. Together, our data suggest that Cdk1, Aurora A, and Plk1 mitotic kinases participate in a feedback activation loop and that activation of Cdk1 initiates the feedback loop activity, leading to rapid and timely entry into mitosis in human cells. In addition, live cell imaging reveals that the nuclear cycle of cells becomes uncoupled from cytokinesis upon inactivation of both Aurora A and Aurora B kinases and continues to oscillate in a Cdk1-dependent manner in the absence of cytokinesis, resulting in multinucleated, polyploidy cells.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa A , Aurora Quinasa B , Aurora Quinasas , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , División Celular , Fase G2 , Células HeLa , Histonas/química , Humanos , Ratones , Mitosis , Fosforilación , Proteínas Proto-Oncogénicas/metabolismo , Treonina/química , Venas Umbilicales/citología , Quinasa Tipo Polo 1
16.
Biochim Biophys Acta ; 1804(3): 642-52, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20005305

RESUMEN

This work outlines a new de novo design process for the creation of novel kinase inhibitor libraries. It relies on a profiling paradigm that generates a substantial amount of kinase inhibitor data from which highly predictive QSAR models can be constructed. In addition, a broad diversity of X-ray structure information is needed for binding mode prediction. This is important for scaffold and substituent site selection. Borrowing from FBDD, the process involves fragmentation of known actives, proposition of binding mode hypotheses for the fragments, and model-driven recombination using a pharmacophore derived from known kinase inhibitor structures. The support vector machine method, using Merck atom pair derived fingerprint descriptors, was used to build models from activity from 6 kinase assays. These models were qualified prospectively by selecting and testing compounds from the internal compound collection. Overall hit and enrichment rates of 82% and 2.5%, respectively, qualified the models for use in library design. Using the process, 7 novel libraries were designed, synthesized and tested against these same 6 kinases. The results showed excellent results, yielding a 92% hit rate for the 179 compounds that made up the 7 libraries. The results of one library designed to include known literature compounds, as well as an analysis of overall substituent frequency, are discussed.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Biblioteca de Péptidos , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Animales , Cristalografía por Rayos X , Humanos , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química
17.
J Med Chem ; 52(20): 6456-66, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19791746

RESUMEN

A reconstructive approach based on computational fragmentation of existing inhibitors and validated kinase potency models to recombine and create "de novo" kinase inhibitor small molecule libraries is described. The screening results from model selected molecules from the corporate database and seven computationally derived small molecule libraries were used to evaluate this approach. Specifically, 1895 model selected database molecules were screened at 20 microM in six kinase assays and yielded an overall hit rate of 84%. These models were then used in the de novo design of seven chemical libraries consisting of 20-50 compounds each. Then 179 compounds from synthesized libraries were tested against these six kinases with an overall hit rate of 92%. Comparing predicted and observed selectivity profiles serves to highlight the strengths and limitations of the methodology, while analysis of functional group contributions from the libraries suggest general principles governing binding of ATP competitive compounds.


Asunto(s)
Diseño de Fármacos , Modelos Moleculares , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Simulación por Computador , Evaluación Preclínica de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Fosfotransferasas/química , Conformación Proteica , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Solubilidad
18.
Bioorg Med Chem Lett ; 18(1): 179-83, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18039577

RESUMEN

Herein we report investigations into the p38alpha MAP kinase activity of trisubstituted imidazoles that led to the identification of compounds possessing highly potent in vivo activity. The SAR of a novel series of imidazopyridines is demonstrated as well, resulting in compounds possessing cellular potency and enhanced in vivo activity in the rat collagen-induced arthritis model of chronic inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Imidazoles/farmacología , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Piridinas/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Bencimidazoles/química , Bencimidazoles/farmacocinética , Bencimidazoles/farmacología , Edema/tratamiento farmacológico , Receptores ErbB/metabolismo , Humanos , Imidazoles/química , Imidazoles/farmacocinética , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/metabolismo , Piridinas/química , Piridinas/farmacocinética , Ratas , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
19.
Curr Opin Drug Discov Devel ; 8(5): 613-8, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16159023

RESUMEN

Small molecules with potent and selective antitumor activity continue to be identified by screening in cellular assays and to be entered into clinical development, and in some cases small molecules are progressed despite the fact that the mechanism of action is unknown. Current examples of drugs with unknown mechanism of action include LY-573636 (Eli Lilly & Co), CHS-828 and SPC-595 (Sunesis Pharmaceutical Co Ltd). Early discovery and the elucidation of structure-activity relationships may be in part facilitated by the fact that the compounds must be relatively soluble and permeable to cells to demonstrate activity, although the challenges of optimizing absorption, distribution, metabolism and excretion/pharmacokinetic properties, toxicity and clinical activity remain similar to compounds developed under the 'targeted therapy' paradigm.


Asunto(s)
Antineoplásicos , Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Estructura Molecular , Relación Estructura-Actividad
20.
J Biol Chem ; 280(19): 19298-305, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15737997

RESUMEN

Mixed lineage kinase 7 (MLK7) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates the pro-apoptotic signaling pathways p38 and JNK. A library of potential kinase inhibitors was screened, and a series of dihydropyrrolopyrazole quinolines was identified as highly potent inhibitors of MLK7 in vitro catalytic activity. Of this series, an aryl-substituted dihydropyrrolopyrazole quinoline (DHP-2) demonstrated an IC50 of 70 nM for inhibition of pJNK formation in COS-7 cell MLK7/JNK co-transfection assays. In stimulated cells, DHP-2 at 200 nM or MLK7 small interfering RNA completely blocked anisomycin and UV induced but had no effect on interleukin-1beta or tumor necrosis factor-alpha-induced p38 and JNK activation. Additionally, the compound blocked anisomycin and UV-induced apoptosis in COS-7 cells. Heart tissue homogenates from MLK7 transgenic mice treated with DHP-2 at 30 mg/kg had reduced JNK and p38 activation with no apparent effect on ERK activation, demonstrating that this compound can be used to block MLK7-driven MAPK pathway activation in vivo. Taken together, these data demonstrate that MLK7 is the MAPKKK required for modulation of the stress-activated MAPKs downstream of anisomycin and UV stimulation and that DHP-2 can be used to block MLK7 pathway activation in cells as well as in vivo.


Asunto(s)
Anisomicina/antagonistas & inhibidores , Anisomicina/química , Citocinas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Musculares/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Pirazoles/farmacología , Quinolinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Anisomicina/farmacología , Apoptosis , Western Blotting , Células COS , Catálisis , Fragmentación del ADN , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/metabolismo , Humanos , Concentración 50 Inhibidora , Interleucina-1/metabolismo , MAP Quinasa Quinasa 4 , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Modelos Químicos , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Plásmidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Pirazoles/química , Quinolinas/química , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Transgenes , Factor de Necrosis Tumoral alfa/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...