Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
STAR Protoc ; 5(2): 103085, 2024 May 24.
Article En | MEDLINE | ID: mdl-38795355

Due to anatomical and biological similarities with humans, pigs are increasingly used for inflammation- and immune-related studies in biomedical research, including the field of osteonecrosis and osteoimmunology. Here, we present a protocol for rib extraction, isolation of the bone marrow by centrifugation, and processing to obtain bone-marrow-derived macrophages (BMDMs). Then, we describe the procedures of in vitro experiments to evaluate the cell phenotype. For complete details on the use and execution of this protocol, please refer to Andre et al.1.

2.
Physiol Rep ; 10(21): e15497, 2022 11.
Article En | MEDLINE | ID: mdl-36325601

Approximately one-third of all breast cancer mortality results from metastatic recurrence after initial success of surgery and/or therapy. Although primary tumor removal is widely accepted as beneficial, it has long been suspected that surgery itself contributes to accelerated metastatic recurrence. We investigated surgical wounding's impact on tumor progression and lung metastasis in a murine model of triple negative breast cancer (TNBC). Ten-week-old female mice were inoculated with 4 T1 cells (week 0) and were either subjected to a 2 cm long cutaneous contralateral incision (wounded) or control (non-wounded) on week 2 and monitored for 3 weeks (week 5). Mice with surgical wounding displayed significantly accelerated tumor growth observable as early as 1-week post wounding. This was confirmed by increased tumor volume and tumor weight, post-mortem. Further, surgical wounding increased metastasis to the lungs, as detected by IVIS imaging, in vivo and ex vivo (week 5). As expected then, wounded mice displayed decreased apoptosis and increased proliferation in both the primary tumor and in the lungs. Flow cytometry revealed that primary tumors from wounded mice exhibited increased tumor associated macrophages and specifically M2-like macrophages, which are important in promoting tumor development, maintenance, and metastasis. Immunofluorescence staining and gene expression data further confirms an increase in macrophages in both the primary tumor and the lungs of wounded mice. Our data suggests that surgical wounding accelerates tumor progression and lung metastasis in a mouse model of TNBC, which is likely mediated, at least in part by an increase in macrophages.


Lung Neoplasms , Triple Negative Breast Neoplasms , Humans , Mice , Female , Animals , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Disease Models, Animal , Cell Line, Tumor , Macrophages/metabolism
3.
BMC Complement Med Ther ; 22(1): 279, 2022 Oct 23.
Article En | MEDLINE | ID: mdl-36274141

BACKGROUND: Quercetin is an organic flavonoid present in several fruits and vegetables. The anti-inflammatory, antiviral, antioxidant, cardio-protective, anti-carcinogenic and neuroprotective properties demonstrated by this dietary supplement endorses it as a possible treatment for inflammatory diseases and cancer. Unfortunately, conflicting research has cast uncertainties on the toxicity of quercetin. The main purpose of this study was to determine if quercetin has any toxic properties in mice at doses that have shown efficacy in pre-clinical studies regarding cancer, cancer therapy, and their off-target effects. METHODS: A sub-chronic toxicity study of quercetin was examined in male and female CD2F1 mice. Three different doses of quercetin (62, 125, and 250 mg/kg of diet) were infused into the AIN-76A purified diet and administered to mice ad libitum for 98 days. Body weight (BW), food consumption, water intake, body composition, blood count, behavior, and metabolic phenotype were assessed at various timepoints during the course of the experiment. Tissue and organs were evaluated for gross pathological changes and plasma was used to measure alkaline phosphatase (AP), aspartate transaminase (AST), and alanine transaminase (ALT). RESULTS: We found that low (62 mg/kg of diet), medium (125 mg/kg of diet), and high (250 mg/kg of diet) quercetin feeding had no discernible effect on body composition, organ function, behavior or metabolism. CONCLUSIONS: In summary, our study establishes that quercetin is safe for use in both female and male CD2F1 mice when given at ~ 12.5, 25, or 50 mg/kg of BW daily doses for 14 weeks (i.e. 98 days). Further studies will need to be conducted to determine any potential toxicity of quercetin following chronic ingestion.


Antioxidants , Quercetin , Mice , Male , Female , Animals , Quercetin/toxicity , Antioxidants/toxicity , Antioxidants/metabolism , Alanine Transaminase , Alkaline Phosphatase , Body Weight , Flavonoids , Aspartate Aminotransferases , Antiviral Agents
4.
J Appl Physiol (1985) ; 133(4): 834-849, 2022 10 01.
Article En | MEDLINE | ID: mdl-36007896

5-Fluorouracil (5FU) remains a first-line chemotherapeutic for several cancers despite its established adverse side effects. Reduced blood counts with cytotoxic chemotherapies not only expose patients to infection and fatigue, but can disrupt tissue repair and remodeling, leading to lasting functional deficits. We sought to characterize the impact of 5FU-induced leukopenia on skeletal muscle in the context of remodeling. First, C57BL/6 mice were subjected to multiple dosing cycles of 5FU and skeletal muscle immune cells were assessed. Second, mice given 1 cycle of 5FU were subjected to 1.2% BaCl2 intramuscularly to induce muscle damage. One cycle of 5FU induced significant body weight loss, but only three dosing cycles of 5FU induced skeletal muscle mass loss. One cycle of 5FU reduced skeletal muscle CD45+ immune cells with a particular loss of infiltrating CD11b+Ly6cHi monocytes. Although CD45+ cells returned following three cycles, CD11b+CD68+ macrophages were reduced with three cycles and remained suppressed at 1 mo following 5FU administration. One cycle of 5FU blocked the increase in CD45+ immune cells 4 days following BaCl2; however, there was a dramatic increase in CD11b+Ly6g+ neutrophils and a loss of CD11b+Ly6cHi monocytes in damaged muscle with 5FU compared with PBS. These perturbations resulted in increased collagen production 14 and 28 days following BaCl2 and a reduction in centralized nuclei and myofibrillar cross-sectional area compared with PBS. Together, these results demonstrate that cytotoxic 5FU impairs muscle damage repair and remodeling concomitant with a loss of immune cells that persists beyond the cessation of treatment.NEW & NOTEWORTHY We examined the common chemotherapeutic 5-fluorouracil's (5FU) impact on skeletal muscle immune cells and skeletal muscle repair. 5FU monotherapy decreased body weight and muscle mass, and perturbed skeletal muscle immune cells. In addition, 5FU decreased skeletal muscle immune cells and impaired infiltration following damage contributing to disrupted muscle repair. Our results demonstrate 5FU's impact on skeletal muscle and provide a potential explanation for why some patients may be unable to properly repair damaged tissue.


Fluorouracil , Monocytes , Animals , Fluorouracil/adverse effects , Macrophages , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology
5.
Cancer Biol Ther ; 23(1): 1-15, 2022 12 31.
Article En | MEDLINE | ID: mdl-35968771

Fluorouracil/5-flourouracil (5FU) is a first-line chemotherapy drug for many cancer types; however, its associated toxicities contribute to poor quality of life and reduced dose intensities negatively impacting patient prognosis. While obesity remains a critical risk factor for most cancers, our understanding regarding how obesity may impact chemotherapy's toxicities is extremely limited. C56BL/6 mice were given high fat (Obese) or standard diets (Lean) for 4 months and then subjected to three cycles of 5FU (5d-40 mg/kg Lean Mass, 9d rest) or PBS vehicle control. Shockingly, only 60% of Obese survived 3 cycles compared to 100% of Lean, and Obese lost significantly more body weight. Dihydropyrimidine dehydrogenase (DPD), the enzyme responsible for 5FU catabolism, was reduced in obese livers. Total white blood cells, neutrophils, and lymphocytes were reduced in Obese 5FU compared to Lean 5FU and PBS controls. While adipocyte size was not affected by 5FU in Obese, skeletal muscle mass and myofibrillar cross section area were decreased following 5FU in Lean and Obese. Although adipose tissue inflammatory gene expression was not impacted by 5FU, distinct perturbations to skeletal muscle inflammatory gene expression and immune cell populations (CD45+ Immune cells, CD45+CD11b+CD68+ macrophages and CD45+CD11b+Ly6clo/int macrophage/monocytes) were observed in Obese only. Our evidence suggests that obesity induced liver pathologies and reduced DPD exacerbated 5FU toxicities. While obesity has been suggested to protect against cancer/chemotherapy-induced cachexia and other toxicities, our results demonstrate that obese mice are not protected, but rather show evidence of increased susceptibility to 5FU-induced cytotoxicity even when dosed for relative lean mass.


Antineoplastic Agents , Neoplasms , Animals , Cachexia/etiology , Dihydrouracil Dehydrogenase (NADP) , Fluorouracil/adverse effects , Mice , Obesity , Quality of Life
...