Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Commun ; 5(2): fcad089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025569

RESUMEN

Neurofibromatosis type 2-related schwannomatosis is a genetic disorder characterized by neurologic tumours, most typically vestibular schwannomas that originate on the vestibulo-cochlear nerve(s). Although vestibular symptoms can be disabling, vestibular function has never been carefully analysed in neurofibromatosis type 2-related schwannomatosis. Furthermore, chemotherapy (e.g. bevacizumab) can reduce tumour volume and improve hearing in neurofibromatosis type 2-related schwannomatosis, but nothing is known about its vestibular effects. In this report, we studied the three primary vestibular-mediated behaviours (eye movements, motion perception and balance), clinical vestibular disability (dizziness and ataxia), and imaging and hearing in eight untreated patients with neurofibromatosis type 2-related schwannomatosis and compared their results with normal subjects and patients with sporadic, unilateral vestibular schwannoma tumours. We also examined how bevacizumab affected two patients with neurofibromatosis type 2-related schwannomatosis. Vestibular schwannomas in neurofibromatosis type 2-related schwannomatosis degraded vestibular precision (inverse of variability, reflecting a reduced central signal-to-noise ratio) but not vestibular accuracy (amplitude relative to ideal amplitude, reflecting the central signal magnitude) and caused clinical disability. Bevacizumab improved vestibular precision and clinical disability in both patients with neurofibromatosis type 2-related schwannomatosis but did not affect vestibular accuracy. These results demonstrate that vestibular schwannoma tumours in our neurofibromatosis type 2-related schwannomatosis population degrade the central vestibular signal-to-noise ratio, while bevacizumab improves the signal-to-noise ratio, changes that can be explained mechanistically by the addition (schwannoma) and suppression (bevacizumab) of afferent neural noise.

2.
J Neurol ; 269(11): 5831-5842, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35930032

RESUMEN

OBJECTIVE:  Extensive animal research has shown that vestibular damage can be associated with cognitive deficits. More recently, new evidence has emerged linking vestibular disorders to cognitive impairment in humans. Herein, we review contemporary research on the pathophysiology of cognitive-vestibular interactions and discuss its emerging clinical relevance. DATA SOURCES: PubMed, Embase, and Cochrane databases. REVIEW METHODS: A systematic literature search was performed with combinations of search terms: "cognition," "cognitive impairment," "chronic fatigue," "brain fog," "spatial navigation," "attention," "memory," "executive function," "processing speed," and "vestibular hypofunction." Relevant articles were considered for inclusion, including basic and clinical studies, case series, and major reviews. CONCLUSIONS: Patients with vestibular disorders can demonstrate long-term deficits in both spatial and nonspatial cognitive domains. The underlying mechanism(s) linking the vestibular system to cognitive function is not well characterized, but several neuro-biologic correlates have been identified. Additional screening tools are required to identify individuals at risk for cognitive impairment, and further research is needed to determine whether treatment of vestibular dysfunction has the capacity to improve cognitive function. IMPLICATIONS FOR PRACTICE: Physicians should be aware of emerging data supporting the presence of cognitive deficits in patients with vestibular disorders. Prevention and treatment of long-term cognitive deficits may be possible through screening and rehabilitation.


Asunto(s)
Productos Biológicos , Disfunción Cognitiva , Navegación Espacial , Enfermedades Vestibulares , Animales , Cognición/fisiología , Disfunción Cognitiva/complicaciones , Humanos , Navegación Espacial/fisiología
3.
J Assoc Res Otolaryngol ; 23(4): 551-566, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35768706

RESUMEN

Velocity storage is a centrally-mediated mechanism that processes peripheral vestibular inputs. One prominent aspect of velocity storage is its effect on dynamic responses to yaw rotation. Specifically, when normal human subjects are accelerated to constant angular yaw velocity, horizontal eye movements and perceived angular velocity decay exponentially with a time constant circa 15-30 s, even though the input from the vestibular periphery decays much faster (~ 6 s). Peripheral vestibular damage causes a time constant reduction, which is useful for clinical diagnoses, but a mechanistic explanation for the relationship between vestibular damage and changes in these behavioral dynamics is lacking. It has been hypothesized that Bayesian optimization determines ideal velocity storage dynamics based on statistics of vestibular noise and experienced motion. Specifically, while a longer time constant would make the central estimate of angular head velocity closer to actual head motion, it may also result in the accumulation of neural noise which simultaneously degrades precision. Thus, the brain may balance these two effects by determining the time constant that optimizes behavior. We applied a Bayesian optimal Kalman filter to determine the ideal velocity storage time constant for unilateral damage. Predicted time constants were substantially lower than normal and similar to patients. Building on our past work showing that Bayesian optimization explains age-related changes in velocity storage, we also modeled interactions between age-related hair cell loss and peripheral damage. These results provide a plausible mechanistic explanation for changes in velocity storage after peripheral damage. Results also suggested that even after peripheral damage, noise originating in the periphery or early central processing may remain relevant in neurocomputations. Overall, our findings support the hypothesis that the brain optimizes velocity storage based on the vestibular signal-to-noise ratio.


Asunto(s)
Vestíbulo del Laberinto , Teorema de Bayes , Encéfalo , Movimientos Oculares , Humanos , Reflejo Vestibuloocular/fisiología , Rotación , Vestíbulo del Laberinto/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...