Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937582

RESUMEN

Hippocampal place cells are influenced by both self-motion (idiothetic) signals and external sensory landmarks as an animal navigates its environment. To continuously update a position signal on an internal 'cognitive map', the hippocampal system integrates self-motion signals over time, a process that relies on a finely calibrated path integration gain that relates movement in physical space to movement on the cognitive map. It is unclear whether idiothetic cues alone, such as optic flow, exert sufficient influence on the cognitive map to enable recalibration of path integration, or if polarizing position information provided by landmarks is essential for this recalibration. Here, we demonstrate both recalibration of path integration gain and systematic control of place fields by pure optic flow information in freely moving rats. These findings demonstrate that the brain continuously rebalances the influence of conflicting idiothetic cues to fine-tune the neural dynamics of path integration, and that this recalibration process does not require a top-down, unambiguous position signal from landmarks.

2.
Front Integr Neurosci ; 16: 965211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118117

RESUMEN

Recent technological advances greatly improved the possibility to study freely behaving animals in natural conditions. However, many systems still rely on animal-mounted devices, which can already bias behavioral observations. Alternatively, animal behaviors can be detected and tracked in recordings of stationary sensors, e.g., video cameras. While these approaches circumvent the influence of animal-mounted devices, identification of individuals is much more challenging. We take advantage of the individual-specific electric fields electric fish generate by discharging their electric organ (EOD) to record and track their movement and communication behaviors without interfering with the animals themselves. EODs of complete groups of fish can be recorded with electrode arrays submerged in the water and then be tracked for individual fish. Here, we present an improved algorithm for tracking electric signals of wave-type electric fish. Our algorithm benefits from combining and refining previous approaches of tracking individual specific EOD frequencies and spatial electric field properties. In this process, the similarity of signal pairs in extended data windows determines their tracking order, making the algorithm more robust against detection losses and intersections. We quantify the performance of the algorithm and show its application for a data set recorded with an array of 64 electrodes distributed over a 12 m2 section of a stream in the Llanos, Colombia, where we managed, for the first time, to track Apteronotus leptorhynchus over many days. These technological advances make electric fish a unique model system for a detailed analysis of social and communication behaviors, with strong implications for our research on sensory coding.

3.
J Neurosci Methods ; 368: 109453, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34968626

RESUMEN

BACKGROUND: Camera images can encode large amounts of visual information of an animal and its environment, enabling high fidelity 3D reconstruction of the animal and its environment using computer vision methods. Most systems, both markerless (e.g. deep learning based) and marker-based, require multiple cameras to track features across multiple points of view to enable such 3D reconstruction. However, such systems can be expensive and are challenging to set up in small animal research apparatuses. NEW METHODS: We present an open-source, marker-based system for tracking the head of a rodent for behavioral research that requires only a single camera with a potentially wide field of view. The system features a lightweight visual target and computer vision algorithms that together enable high-accuracy tracking of the six-degree-of-freedom position and orientation of the animal's head. The system, which only requires a single camera positioned above the behavioral arena, robustly reconstructs the pose over a wide range of head angles (360° in yaw, and approximately ± 120° in roll and pitch). RESULTS: Experiments with live animals demonstrate that the system can reliably identify rat head position and orientation. Evaluations using a commercial optical tracker device show that the system achieves accuracy that rivals commercial multi-camera systems. COMPARISON WITH EXISTING METHODS: Our solution significantly improves upon existing monocular marker-based tracking methods, both in accuracy and in allowable range of motion. CONCLUSIONS: The proposed system enables the study of complex behaviors by providing robust, fine-scale measurements of rodent head motions in a wide range of orientations.


Asunto(s)
Algoritmos , Dispositivos Ópticos , Animales , Computadores , Movimiento (Física) , Ratas
4.
J Neurosci Methods ; 368: 109336, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34453979

RESUMEN

The cognitive map in the hippocampal formation of rodents and other mammals integrates multiple classes of sensory and motor information into a coherent representation of space. Here, we describe the Dome, a virtual reality apparatus for freely locomoting rats, designed to examine the relative contributions of various spatial inputs to an animal's spatial representation. The Dome was designed to preserve the range of spatial inputs typically available to an animal in free, untethered locomotion while providing the ability to perturb specific sensory cues. We present the design rationale and corresponding specifications of the Dome, along with a variety of engineering and biological analyses to validate the efficacy of the Dome as an experimental tool to examine the interaction between visual information and path integration in place cells in rodents.


Asunto(s)
Percepción Espacial , Realidad Virtual , Animales , Señales (Psicología) , Hipocampo , Ratas , Roedores
5.
Nature ; 566(7745): 533-537, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742074

RESUMEN

Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain1. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks2,3 and measuring the distance and direction that the animal has travelled from previously occupied locations4-7. The latter mechanism-known as path integration-requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates8,9. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant9-14, but behavioural evidence in humans suggests that the gain is modifiable15. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system4,8,16-19, but also rapidly fine-tune the integration computation itself.


Asunto(s)
Hipocampo/citología , Plasticidad Neuronal/fisiología , Células de Lugar/citología , Células de Lugar/fisiología , Procesamiento Espacial/fisiología , Animales , Señales (Psicología) , Retroalimentación Fisiológica , Células de Red/citología , Células de Red/fisiología , Hipocampo/fisiología , Masculino , Ratas , Ratas Long-Evans , Navegación Espacial/fisiología
6.
Sci Rep ; 8(1): 5830, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643472

RESUMEN

The study of animal behavior has been revolutionized by sophisticated methodologies that identify and track individuals in video recordings. Video recording of behavior, however, is challenging for many species and habitats including fishes that live in turbid water. Here we present a methodology for identifying and localizing weakly electric fishes on the centimeter scale with subsecond temporal resolution based solely on the electric signals generated by each individual. These signals are recorded with a grid of electrodes and analyzed using a two-part algorithm that identifies the signals from each individual fish and then estimates the position and orientation of each fish using Bayesian inference. Interestingly, because this system involves eavesdropping on electrocommunication signals, it permits monitoring of complex social and physical interactions in the wild. This approach has potential for large-scale non-invasive monitoring of aquatic habitats in the Amazon basin and other tropical freshwater systems.


Asunto(s)
Técnicas de Observación Conductual/métodos , Conducta Animal/fisiología , Pez Eléctrico/fisiología , Ríos , Conducta Social , Animales , Teorema de Bayes , Técnicas de Observación Conductual/instrumentación , Ecosistema , Órgano Eléctrico/fisiología , Electrodos
7.
J R Soc Interface ; 12(108): 20150209, 2015 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-26236826

RESUMEN

Many biological phenomena such as locomotion, circadian cycles and breathing are rhythmic in nature and can be modelled as rhythmic dynamical systems. Dynamical systems modelling often involves neglecting certain characteristics of a physical system as a modelling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady state (limit-cycle). Here, we adapt statistical cross-validation in order to examine whether there are statistically significant asymmetries and, even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modelling convenience--it can produce a better model.


Asunto(s)
Modelos Biológicos , Caminata/psicología , Adulto , Femenino , Humanos , Masculino
8.
Integr Comp Biol ; 54(2): 223-37, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24893678

RESUMEN

Control theory arose from a need to control synthetic systems. From regulating steam engines to tuning radios to devices capable of autonomous movement, it provided a formal mathematical basis for understanding the role of feedback in the stability (or change) of dynamical systems. It provides a framework for understanding any system with regulation via feedback, including biological ones such as regulatory gene networks, cellular metabolic systems, sensorimotor dynamics of moving animals, and even ecological or evolutionary dynamics of organisms and populations. Here, we focus on four case studies of the sensorimotor dynamics of animals, each of which involves the application of principles from control theory to probe stability and feedback in an organism's response to perturbations. We use examples from aquatic (two behaviors performed by electric fish), terrestrial (following of walls by cockroaches), and aerial environments (flight control by moths) to highlight how one can use control theory to understand the way feedback mechanisms interact with the physical dynamics of animals to determine their stability and response to sensory inputs and perturbations. Each case study is cast as a control problem with sensory input, neural processing, and motor dynamics, the output of which feeds back to the sensory inputs. Collectively, the interaction of these systems in a closed loop determines the behavior of the entire system.


Asunto(s)
Retroalimentación Sensorial , Invertebrados/fisiología , Vertebrados/fisiología , Animales , Modelos Biológicos
9.
J Exp Biol ; 216(Pt 22): 4272-84, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23997196

RESUMEN

The Jamming Avoidance Response, or JAR, in the weakly electric fish has been analyzed at all levels of organization, from whole-organism behavior down to specific ion channels. Nevertheless, a parsimonious description of the JAR behavior in terms of a dynamical system model has not been achieved at least in part due to the fact that 'avoidance' behaviors are both intrinsically unstable and nonlinear. We overcame the instability of the JAR in Eigenmannia virescens by closing a feedback loop around the behavioral response of the animal. Specifically, the instantaneous frequency of a jamming stimulus was tied to the fish's own electrogenic frequency by a feedback law. Without feedback, the fish's own frequency diverges from the stimulus frequency, but appropriate feedback stabilizes the behavior. After stabilizing the system, we measured the responses in the fish's instantaneous frequency to various stimuli. A delayed first-order linear system model fitted the behavior near the equilibrium. Coherence to white noise stimuli together with quantitative agreement across stimulus types supported this local linear model. Next, we examined the intrinsic nonlinearity of the behavior using clamped frequency difference experiments to extend the model beyond the neighborhood of the equilibrium. The resulting nonlinear model is composed of competing motor return and sensory escape terms. The model reproduces responses to step and ramp changes in the difference frequency (df) and predicts a 'snap-through' bifurcation as a function of dF that we confirmed experimentally.


Asunto(s)
Comunicación Animal , Conducta Animal/fisiología , Gymnotiformes/fisiología , Modelos Biológicos , Animales , Órgano Eléctrico/fisiología , Retroalimentación , Modelos Lineales
10.
J Exp Biol ; 215(Pt 23): 4196-207, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23136154

RESUMEN

Recent studies have shown that central nervous system neurons in weakly electric fish respond to artificially constructed electrosensory envelopes, but the behavioral relevance of such stimuli is unclear. Here we investigate the possibility that social context creates envelopes that drive behavior. When Eigenmannia virescens are in groups of three or more, the interactions between their pseudo-sinusoidal electric fields can generate 'social envelopes'. We developed a simple mathematical prediction for how fish might respond to such social envelopes. To test this prediction, we measured the responses of E. virescens to stimuli consisting of two sinusoids, each outside the range of the Jamming Avoidance Response (JAR), that when added to the fish's own electric field produced low-frequency (below 10 Hz) social envelopes. Fish changed their electric organ discharge (EOD) frequency in response to these envelopes, which we have termed the Social Envelope Response (SER). In 99% of trials, the direction of the SER was consistent with the mathematical prediction. The SER was strongest in response to the lowest initial envelope frequency tested (2 Hz) and depended on stimulus amplitude. The SER generally resulted in an increase of the envelope frequency during the course of a trial, suggesting that this behavior may be a mechanism for avoiding low-frequency social envelopes. Importantly, the direction of the SER was not predicted by the superposition of two JAR responses: the SER was insensitive to the amplitude ratio between the sinusoids used to generate the envelope, but was instead predicted by the sign of the difference of difference frequencies.


Asunto(s)
Órgano Eléctrico/fisiología , Campos Electromagnéticos , Gymnotiformes/fisiología , Conducta Social , Animales , Modelos Biológicos , Percepción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...