Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
J Leukoc Biol ; 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38478700

Eosinophils have been mainly studied in allergic diseases and parasitic infections. Nonetheless, eosinophils accumulate in a variety of solid tumors, including colorectal cancer, where their presence is associated with improved prognosis. Eosinophils can promote anti-tumor immunity through various mechanisms, including direct cytotoxicity towards tumor cells and promoting T cell activation. However, the mechanisms by which tumor cells regulate eosinophil activities are largely unknown. Herein, we characterized the potential interactions between eosinophils and colorectal cancer cells using an unbiased transcriptomic and proteomic analyses approach. Human eosinophils were stimulated with colorectal cancer cell-conditioned media, containing tumor cell-secreted factors from multiple cancer cell lines. RNA sequencing analysis identified a "core" signature consisting of 101 genes that characterize a baseline transcriptional program for the response of human eosinophils to colorectal cancer cells. Among these, the increased expression of IL-3Rα and its ßc chain was identified and validated at the protein level. Secreted factors from tumor cells potentiated IL-3-induced expression of the adhesion molecule CD11a in eosinophils. Combining proteomics analysis of tumor cell-secreted factors with RNA sequencing revealed potential ligand-receptor pairs between tumor cells and eosinophils and the potential involvement of the adhesion molecule CD18 and F2RL3/PAR4. Subsequent functional analyses demonstrated that F2RL3/PAR4 suppresses eosinophil migration in response tumor cell-secreted factors. These findings add to the growing body of evidence that eosinophils are conditioned by their local microenvironment. Identifying mechanisms by which eosinophils interact with tumor cells could lead to the development of new immunotherapies for colorectal cancer and other solid tumors.

2.
Nat Immunol ; 24(11): 1908-1920, 2023 Nov.
Article En | MEDLINE | ID: mdl-37828379

Co-inhibitory and checkpoint molecules suppress T cell function in the tumor microenvironment, thereby rendering T cells dysfunctional. Although immune checkpoint blockade is a successful treatment option for multiple human cancers, severe autoimmune-like adverse effects can limit its application. Here, we show that the gene encoding peptidoglycan recognition protein 1 (PGLYRP1) is highly coexpressed with genes encoding co-inhibitory molecules, indicating that it might be a promising target for cancer immunotherapy. Genetic deletion of Pglyrp1 in mice led to decreased tumor growth and an increased activation/effector phenotype in CD8+ T cells, suggesting an inhibitory function of PGLYRP1 in CD8+ T cells. Surprisingly, genetic deletion of Pglyrp1 protected against the development of experimental autoimmune encephalomyelitis, a model of autoimmune disease in the central nervous system. PGLYRP1-deficient myeloid cells had a defect in antigen presentation and T cell activation, indicating that PGLYRP1 might function as a proinflammatory molecule in myeloid cells during autoimmunity. These results highlight PGLYRP1 as a promising target for immunotherapy that, when targeted, elicits a potent antitumor immune response while protecting against some forms of tissue inflammation and autoimmunity.


Encephalomyelitis, Autoimmune, Experimental , Neoplasms , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Immunotherapy , Inflammation , Neuroinflammatory Diseases , Tumor Microenvironment
3.
Front Immunol ; 14: 1199064, 2023.
Article En | MEDLINE | ID: mdl-37325645

The T cell receptor is generated by a process of random and imprecise somatic recombination. The number of possible T cell receptors which this process can produce is enormous, greatly exceeding the number of T cells in an individual. Thus, the likelihood of identical TCRs being observed in multiple individuals (public TCRs) might be expected to be very low. Nevertheless such public TCRs have often been reported. In this study we explore the extent of TCR publicity in the context of acute resolving Lymphocytic choriomeningitis virus (LCMV) infection in mice. We show that the repertoire of effector T cells following LCMV infection contains a population of highly shared TCR sequences. This subset of TCRs has a distribution of naive precursor frequencies, generation probabilities, and physico-chemical CDR3 properties which lie between those of classic public TCRs, which are observed in uninfected repertoires, and the dominant private TCR repertoire. We have named this set of sequences "hidden public" TCRs, since they are only revealed following infection. A similar repertoire of hidden public TCRs can be observed in humans after a first exposure to SARS-COV-2. The presence of hidden public TCRs which rapidly expand following viral infection may therefore be a general feature of adaptive immunity, identifying an additional level of inter-individual sharing in the TCR repertoire which may form an important component of the effector and memory response.


COVID-19 , Lymphocytic Choriomeningitis , Humans , Mice , Animals , SARS-CoV-2 , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
4.
Cancer Cell ; 41(2): 235-251.e9, 2023 02 13.
Article En | MEDLINE | ID: mdl-36638785

Cancer immunotherapy critically depends on fitness of cytotoxic and helper T cell responses. Dysfunctional cytotoxic T cell states in the tumor microenvironment (TME) are a major cause of resistance to immunotherapy. Intratumoral myeloid cells, particularly blood-borne myeloids (bbm), are key drivers of T cell dysfunction in the TME. We show here that major histocompatibility complex class II (MHCII)-restricted antigen presentation on bbm is essential to control the growth of brain tumors. Loss of MHCII on bbm drives dysfunctional intratumoral tumor-reactive CD8+ T cell states through increased chromatin accessibility and expression of Tox, a critical regulator of T cell exhaustion. Mechanistically, MHCII-dependent activation of CD4+ T cells restricts myeloid-derived osteopontin that triggers a chronic activation of NFAT2 in tumor-reactive CD8+ T cells. In summary, we provide evidence that MHCII-restricted antigen presentation on bbm is a key mechanism to directly maintain functional cytotoxic T cell states in brain tumors.


Brain Neoplasms , T-Lymphocytes, Cytotoxic , Humans , Antigen Presentation , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class II/metabolism , Tumor Microenvironment
5.
Elife ; 112022 09 20.
Article En | MEDLINE | ID: mdl-36124553

Despite the remarkable successes of cancer immunotherapies, the majority of patients will experience only partial response followed by relapse of resistant tumors. While treatment resistance has frequently been attributed to clonal selection and immunoediting, comparisons of paired primary and relapsed tumors in melanoma and breast cancers indicate that they share the majority of clones. Here, we demonstrate in both mouse models and clinical human samples that tumor cells evade immunotherapy by generating unique transient cell-in-cell structures, which are resistant to killing by T cells and chemotherapies. While the outer cells in this cell-in-cell formation are often killed by reactive T cells, the inner cells remain intact and disseminate into single tumor cells once T cells are no longer present. This formation is mediated predominantly by IFNγ-activated T cells, which subsequently induce phosphorylation of the transcription factors signal transducer and activator of transcription 3 (STAT3) and early growth response-1 (EGR-1) in tumor cells. Indeed, inhibiting these factors prior to immunotherapy significantly improves its therapeutic efficacy. Overall, this work highlights a currently insurmountable limitation of immunotherapy and reveals a previously unknown resistance mechanism which enables tumor cells to survive immune-mediated killing without altering their immunogenicity.


Cancer immunotherapies use the body's own immune system to fight off cancer. But, despite some remarkable success stories, many patients only see a temporary improvement before the immunotherapy stops being effective and the tumours regrow. It is unclear why this occurs, but it may have to do with how the immune system attacks cancer cells. Immunotherapies aim to activate a special group of cells known as killer T-cells, which are responsible for the immune response to tumours. These cells can identify cancer cells and inject toxic granules through their membranes, killing them. However, killer T-cells are not always effective. This is because cancer cells are naturally good at avoiding detection, and during treatment, their genes can mutate, giving them new ways to evade the immune system. Interestingly, when scientists analysed the genes of tumour cells before and after immunotherapy, they found that many of the genes that code for proteins recognized by T-cells do not change significantly. This suggests that tumours' resistance to immune attack may be physical, rather than genetic. To investigate this hypothesis, Gutwillig et al. developed several mouse tumour models that stop responding to immunotherapy after initial treatment. Examining cells from these tumours revealed that when the immune system attacks, they reorganise by getting inside one another. This allows some cancer cells to hide under many layers of cell membrane. At this point killer T-cells can identify and inject the outer cell with toxic granules, but it cannot reach the cells inside. This ability of cancer cells to hide within one another relies on them recognising when the immune system is attacking. This happens because the cancer cells can detect certain signals released by the killer T-cells, allowing them to hide. Gutwillig et al. identified some of these signals, and showed that blocking them stopped cancer cells from hiding inside each other, making immunotherapy more effective. This new explanation for how cancer cells escape the immune system could guide future research and lead to new cancer treatments, or approaches to boost existing treatments. Understanding the process in more detail could allow scientists to prevent it from happening, by revealing which signals to block, and when, for best results.


Cell-in-Cell Formation , Melanoma , Animals , Humans , Immunologic Factors , Immunotherapy , Melanoma/therapy , Mice , Recurrence , STAT3 Transcription Factor
6.
Front Immunol ; 13: 939394, 2022.
Article En | MEDLINE | ID: mdl-35967295

We systematically examine the receptor repertoire in T cell subsets in young, adult, and LCMV-infected mice. Somatic recombination generates diversity, resulting in the limited overlap between nucleotide sequences of different repertoires even within the same individual. However, statistical features of the repertoire, quantified by the V gene and CDR3 k-mer frequency distributions, are highly conserved. A hierarchy of immunological processes drives the evolution of this structure. Intra-thymic divergence of CD4+ and CD8+ lineages imposes subtle but dominant differences observed across repertoires of all subpopulations in both young and adult mice. Differentiation from naive through memory to effector phenotype imposes an additional gradient of repertoire diversification, which is further influenced by age in a complex and lineage-dependent manner. The distinct repertoire of CD4+ regulatory T cells is more similar to naive cells in young mice and to effectors in adults. Finally, we describe divergent (naive and memory) and convergent (CD8+ effector) evolution of the repertoire following acute infection with LCMV. This study presents a quantitative framework that captures the structure of the repertoire in terms of its fundamental statistical properties and describes how this structure evolves as individual T cells differentiate, migrate and mature in response to antigen exposure.


CD8-Positive T-Lymphocytes , T-Lymphocyte Subsets , Animals , Antigens , Mice , Receptors, Antigen, T-Cell/genetics
7.
JCI Insight ; 7(17)2022 09 08.
Article En | MEDLINE | ID: mdl-35980743

Development of resistance to chemo- and immunotherapies often occurs following treatment of melanoma brain metastasis (MBM). The brain microenvironment (BME), particularly astrocytes, cooperate toward MBM progression by upregulating secreted factors, among which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, were overexpressed in MBM compared with primary lesions. Among other sources of MCP-1 in the brain, we show that melanoma cells altered astrocyte secretome and evoked MCP-1 expression and secretion, which in turn induced CCR2 expression in melanoma cells, enhancing in vitro tumorigenic properties, such as proliferation, migration, and invasion of melanoma cells. In vivo pharmacological blockade of MCP-1 or molecular knockout of CCR2/CCR4 increased the infiltration of cytotoxic CD8+ T cells and attenuated the immunosuppressive phenotype of the BME as shown by decreased infiltration of Tregs and tumor-associated macrophages/microglia in several models of intracranially injected MBM. These in vivo strategies led to decreased MBM outgrowth and prolonged the overall survival of the mice. Our findings highlight the therapeutic potential of inhibiting interactions between BME and melanoma cells for the treatment of this disease.


Brain Neoplasms , Melanoma , Animals , Brain/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Chemokine CCL2/metabolism , Melanoma/drug therapy , Melanoma/pathology , Mice , Receptors, CCR2/metabolism , Tumor Microenvironment
8.
Brain ; 145(9): 3288-3307, 2022 09 14.
Article En | MEDLINE | ID: mdl-35899587

Malignant brain tumours are the cause of a disproportionate level of morbidity and mortality among cancer patients, an unfortunate statistic that has remained constant for decades. Despite considerable advances in the molecular characterization of these tumours, targeting the cancer cells has yet to produce significant advances in treatment. An alternative strategy is to target cells in the glioblastoma microenvironment, such as tumour-associated astrocytes. Astrocytes control multiple processes in health and disease, ranging from maintaining the brain's metabolic homeostasis, to modulating neuroinflammation. However, their role in glioblastoma pathogenicity is not well understood. Here we report that depletion of reactive astrocytes regresses glioblastoma and prolongs mouse survival. Analysis of the tumour-associated astrocyte translatome revealed astrocytes initiate transcriptional programmes that shape the immune and metabolic compartments in the glioma microenvironment. Specifically, their expression of CCL2 and CSF1 governs the recruitment of tumour-associated macrophages and promotes a pro-tumourigenic macrophage phenotype. Concomitantly, we demonstrate that astrocyte-derived cholesterol is key to glioma cell survival, and that targeting astrocytic cholesterol efflux, via ABCA1, halts tumour progression. In summary, astrocytes control glioblastoma pathogenicity by reprogramming the immunological properties of the tumour microenvironment and supporting the non-oncogenic metabolic dependency of glioblastoma on cholesterol. These findings suggest that targeting astrocyte immunometabolic signalling may be useful in treating this uniformly lethal brain tumour.


Brain Neoplasms , Glioblastoma , Glioma , Animals , Astrocytes/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glioma/genetics , Mice , Tumor Microenvironment , Virulence
9.
Nat Biotechnol ; 40(12): 1807-1813, 2022 12.
Article En | MEDLINE | ID: mdl-35773341

Multiple clinical trials of allogeneic T cell therapy use site-specific nucleases to disrupt T cell receptor (TCR) and other genes1-6. In this study, using single-cell RNA sequencing, we investigated genome editing outcomes in primary human T cells transfected with CRISPR-Cas9 and guide RNAs targeting genes for TCR chains and programmed cell death protein 1. Four days after transfection, we found a loss of chromosome 14, harboring the TCRα locus, in up to 9% of the cells and a chromosome 14 gain in up to 1.4% of the cells. Chromosome 7, harboring the TCRß locus, was truncated in 9.9% of the cells. Aberrations were validated using fluorescence in situ hybridization and digital droplet PCR. Aneuploidy was associated with reduced proliferation, induced p53 activation and cell death. However, at 11 days after transfection, 0.9% of T cells still had a chromosome 14 loss. Aneuploidy and chromosomal truncations are, thus, frequent outcomes of CRISPR-Cas9 cleavage that should be monitored and minimized in clinical protocols.


CRISPR-Cas Systems , T-Lymphocytes , Humans , CRISPR-Cas Systems/genetics , In Situ Hybridization, Fluorescence , Gene Editing/methods , Receptors, Antigen, T-Cell/genetics , Aneuploidy
10.
Nat Immunol ; 23(4): 632-642, 2022 04.
Article En | MEDLINE | ID: mdl-35301508

Although inhibition of T cell coinhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. In the present study, we show that type 1 interferon (IFN-I) regulates coinhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses established the dynamic regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors (TFs) and TF footprint analysis revealed two regulator modules with different temporal kinetics that control expression of coinhibitory receptors and IFN-I response genes, with SP140 highlighted as one of the key regulators that differentiates LAG-3 and TIGIT expression. Finally, we found that the dynamic IFN-I response in vitro closely mirrored T cell features in acute SARS-CoV-2 infection. The identification of unique TFs controlling coinhibitory receptor expression under IFN-I response may provide targets for enhancement of immunotherapy in cancer, infectious diseases and autoimmunity.


COVID-19 , Interferon Type I , Gene Regulatory Networks , Humans , Interferon Type I/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Immunologic/genetics , SARS-CoV-2 , T-Lymphocytes
11.
Pharmaceutics ; 13(12)2021 Dec 20.
Article En | MEDLINE | ID: mdl-34959480

Development of chemo-resistance is a major challenge in glioblastoma (GB) treatment. This phenomenon is often driven by increased activation of genes associated with DNA repair, such as the alkyl-removing enzyme O6-methylguanine-DNA methyltransferase (MGMT) in combination with overexpression of canonical genes related to cell proliferation and tumor progression, such as Polo-like kinase 1 (Plk1). Hereby, we attempt to sensitize resistant GB cells using our established amphiphilic poly(α)glutamate (APA): small interfering RNA (siRNA) polyplexes, targeting Plk1. Furthermore, we improved brain-targeting by decorating our nanocarrier with sulfonate groups. Our sulfonated nanocarrier showed superior selectivity towards P-selectin (SELP), a transmembrane glycoprotein overexpressed in GB and angiogenic brain endothelial cells. Self-assembled polyplexes of sulfonated APA and siPlk1 internalized into GB cells and into our unique 3-dimensional (3D) GB spheroids inducing specific gene silencing. Moreover, our RNAi nanotherapy efficiently reduced the cell viability of both chemo-sensitive and chemo-resistant GB cells. Our developed sulfonated amphiphilic poly(α)glutamate nanocarrier has the potential to target siRNA to GB brain tumors. Our findings may strengthen the therapeutic applications of siRNA for chemo-resistant GB tumors, or as a combination therapy for chemo-sensitive GB tumors.

12.
Sci Adv ; 7(34)2021 08.
Article En | MEDLINE | ID: mdl-34407932

Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our 3D-bioink platform and in orthotopic cancer mouse models as opposed to 2D culture on rigid plastic plates. Our 3D-bioprinted model could be the basis for potentially replacing cell cultures and animal models as a powerful platform for rapid, reproducible, and robust target discovery; personalized therapy screening; and drug development.


Glioblastoma , Animals , Astrocytes , Endothelial Cells , Glioblastoma/pathology , Humans , Mice , Pericytes , Tumor Microenvironment
13.
Cancer Res ; 81(21): 5555-5571, 2021 11 01.
Article En | MEDLINE | ID: mdl-34429328

The recognition of the immune system as a key component of the tumor microenvironment (TME) led to promising therapeutics. Because such therapies benefit only subsets of patients, understanding the activities of immune cells in the TME is required. Eosinophils are an integral part of the TME especially in mucosal tumors. Nonetheless, their role in the TME and the environmental cues that direct their activities are largely unknown. We report that breast cancer lung metastases are characterized by resident and recruited eosinophils. Eosinophil recruitment to the metastatic sites in the lung was regulated by G protein-coupled receptor signaling but independent of CCR3. Functionally, eosinophils promoted lymphocyte-mediated antitumor immunity. Transcriptome and proteomic analyses identified the TME rather than intrinsic differences between eosinophil subsets as a key instructing factor directing antitumorigenic eosinophil activities. Specifically, TNFα/IFNγ-activated eosinophils facilitated CD4+ and CD8+ T-cell infiltration and promoted antitumor immunity. Collectively, we identify a mechanism by which the TME trains eosinophils to adopt antitumorigenic properties, which may lead to the development of eosinophil-targeted therapeutics. SIGNIFICANCE: These findings demonstrate antitumor activities of eosinophils in the metastatic tumor microenvironment, suggesting that harnessing eosinophil activity may be a viable clinical strategy in patients with cancer.


Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Eosinophils/immunology , Lung Neoplasms/immunology , Receptors, CCR3/physiology , Tumor Microenvironment , Animals , Apoptosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Elife ; 102021 06 25.
Article En | MEDLINE | ID: mdl-34169837

Mortality from breast cancer is almost exclusively a result of tumor metastasis, and lungs are one of the main metastatic sites. Cancer-associated fibroblasts are prominent players in the microenvironment of breast cancer. However, their role in the metastatic niche is largely unknown. In this study, we profiled the transcriptional co-evolution of lung fibroblasts isolated from transgenic mice at defined stage-specific time points of metastases formation. Employing multiple knowledge-based platforms of data analysis provided powerful insights on functional and temporal regulation of the transcriptome of fibroblasts. We demonstrate that fibroblasts in lung metastases are transcriptionally dynamic and plastic, and reveal stage-specific gene signatures that imply functional tasks, including extracellular matrix remodeling, stress response, and shaping the inflammatory microenvironment. Furthermore, we identified Myc as a central regulator of fibroblast rewiring and found that stromal upregulation of Myc transcriptional networks is associated with disease progression in human breast cancer.


Fibroblasts/pathology , Lung Neoplasms/secondary , Lung/pathology , Transcriptome , Tumor Microenvironment/genetics , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Mice , Mice, Transgenic
15.
Res Sq ; 2021 Jun 08.
Article En | MEDLINE | ID: mdl-34127967

While inhibition of T cell co-inhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. Type 1 interferon (IFN-I) modulates T cell immunity in viral infection, autoimmunity, and cancer, and may facilitate induction of T cell exhaustion in chronic viral infection. Here we show that IFN-I regulates co-inhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while surprisingly inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses enabled the construction of dynamic transcriptional regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors on human primary T cells revealed unique regulators that control expression of co-inhibitory receptors. We found that the dynamic IFN-I response in vitro closely mirrored T cell features with IFN-I linked acute SARS-CoV-2 infection in human, with high LAG3 and decreased TIGIT expression. Finally, our gene regulatory network identified SP140 as a key regulator for differential LAG3 and TIGIT expression, which were validated at the level of protein expression. The construction of IFN-I regulatory networks with identification of unique transcription factors controlling co-inhibitory receptor expression may provide targets for enhancement of immunotherapy in cancer, infectious diseases, and autoimmunity.

16.
Sci Adv ; 7(22)2021 05.
Article En | MEDLINE | ID: mdl-34039612

Chronic infectious diseases have a substantial impact on the human B cell compartment including a notable expansion of B cells here termed atypical B cells (ABCs). Using unbiased single-cell RNA sequencing (scRNA-seq), we uncovered and characterized heterogeneities in naïve B cell, classical memory B cells, and ABC subsets. We showed remarkably similar transcriptional profiles for ABC clusters in malaria, HIV, and autoimmune diseases and demonstrated that interferon-γ drove the expansion of ABCs in malaria. These observations suggest that ABCs represent a separate B cell lineage with a common inducer that further diversifies and acquires disease-specific characteristics and functions. In malaria, we identified ABC subsets based on isotype expression that differed in expansion in African children and in B cell receptor repertoire characteristics. Of particular interest, IgD+IgMlo and IgD-IgG+ ABCs acquired a high antigen affinity threshold for activation, suggesting that ABCs may limit autoimmune responses to low-affinity self-antigens in chronic malaria.

17.
Nat Commun ; 12(1): 1912, 2021 03 26.
Article En | MEDLINE | ID: mdl-33771989

Glioblastoma (GB) is a highly invasive type of brain cancer exhibiting poor prognosis. As such, its microenvironment plays a crucial role in its progression. Among the brain stromal cells, the microglia were shown to facilitate GB invasion and immunosuppression. However, the reciprocal mechanisms by which GB cells alter microglia/macrophages behavior are not fully understood. We propose that these mechanisms involve adhesion molecules such as the Selectins family. These proteins are involved in immune modulation and cancer immunity. We show that P-selectin mediates microglia-enhanced GB proliferation and invasion by altering microglia/macrophages activation state. We demonstrate these findings by pharmacological and molecular inhibition of P-selectin which leads to reduced tumor growth and increased survival in GB mouse models. Our work sheds light on tumor-associated microglia/macrophage function and the mechanisms by which GB cells suppress the immune system and invade the brain, paving the way to exploit P-selectin as a target for GB therapy.


Brain Neoplasms/genetics , Glioblastoma/genetics , Macrophages/metabolism , Microglia/metabolism , P-Selectin/genetics , Animals , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Glioblastoma/metabolism , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, SCID , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , P-Selectin/antagonists & inhibitors , P-Selectin/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
18.
Cell Rep ; 33(8): 108433, 2020 11 24.
Article En | MEDLINE | ID: mdl-33238123

Interleukin-27 (IL-27) is an immunoregulatory cytokine that suppresses inflammation through multiple mechanisms, including induction of IL-10, but the transcriptional network mediating its diverse functions remains unclear. Combining temporal RNA profiling with computational algorithms, we predict 79 transcription factors induced by IL-27 in T cells. We validate 11 known and discover 5 positive (Cebpb, Fosl2, Tbx21, Hlx, and Atf3) and 2 negative (Irf9 and Irf8) Il10 regulators, generating an experimentally refined regulatory network for Il10. We report two central regulators, Prdm1 and Maf, that cooperatively drive the expression of signature genes induced by IL-27 in type 1 regulatory T cells, mediate IL-10 expression in all T helper cells, and determine the regulatory phenotype of colonic Foxp3+ regulatory T cells. Prdm1/Maf double-knockout mice develop spontaneous colitis, phenocopying ll10-deficient mice. Our work provides insights into IL-27-driven transcriptional networks and identifies two shared Il10 regulators that orchestrate immunoregulatory programs across T helper cell subsets.


Gene Regulatory Networks/genetics , Interleukin-10/metabolism , Interleukin-27/metabolism , Th1 Cells/metabolism , Animals , Humans , Mice , Mice, Knockout
19.
bioRxiv ; 2020 Oct 31.
Article En | MEDLINE | ID: mdl-33140047

While inhibition of T cell co-inhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. Type 1 interferon (IFN-I) modulates T cell immunity in viral infection, autoimmunity, and cancer, and may facilitate induction of T cell exhaustion in chronic viral infection 1,2 . Here we show that IFN-I regulates co-inhibitory receptors expression on human T cells, inducing PD-1/TIM-3/LAG-3 while surprisingly inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses enabled the construction of dynamic transcriptional regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors on human primary T cells revealed both canonical and non-canonical IFN-I transcriptional regulators, and identified unique regulators that control expression of co-inhibitory receptors. To provide direct in vivo evidence for the role of IFN-I on co-inhibitory receptors, we then performed single cell RNA-sequencing in subjects infected with SARS-CoV-2, where viral load was strongly associated with T cell IFN-I signatures. We found that the dynamic IFN-I response in vitro closely mirrored T cell features with acute IFN-I linked viral infection, with high LAG3 and decreased TIGIT expression. Finally, our gene regulatory network identified SP140 as a key regulator for differential LAG3 and TIGIT expression. The construction of co-inhibitory regulatory networks induced by IFN-I with identification of unique transcription factors controlling their expression may provide targets for enhancement of immunotherapy in cancer, infectious diseases, and autoimmunity.

20.
Immunity ; 53(3): 658-671.e6, 2020 09 15.
Article En | MEDLINE | ID: mdl-32937153

Identifying signals in the tumor microenvironment (TME) that shape CD8+ T cell phenotype can inform novel therapeutic approaches for cancer. Here, we identified a gradient of increasing glucocorticoid receptor (GR) expression and signaling from naïve to dysfunctional CD8+ tumor-infiltrating lymphocytes (TILs). Conditional deletion of the GR in CD8+ TILs improved effector differentiation, reduced expression of the transcription factor TCF-1, and inhibited the dysfunctional phenotype, culminating in tumor growth inhibition. GR signaling transactivated the expression of multiple checkpoint receptors and promoted the induction of dysfunction-associated genes upon T cell activation. In the TME, monocyte-macrophage lineage cells produced glucocorticoids and genetic ablation of steroidogenesis in these cells as well as localized pharmacologic inhibition of glucocorticoid biosynthesis improved tumor growth control. Active glucocorticoid signaling associated with failure to respond to checkpoint blockade in both preclinical models and melanoma patients. Thus, endogenous steroid hormone signaling in CD8+ TILs promotes dysfunction, with important implications for cancer immunotherapy.


CD8-Positive T-Lymphocytes/immunology , Glucocorticoids/metabolism , Macrophages/metabolism , Melanoma, Experimental/pathology , Tumor Microenvironment/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Line, Tumor , Hematopoiesis/immunology , Hepatocyte Nuclear Factor 1-alpha/biosynthesis , Immune Checkpoint Inhibitors , Lymphocyte Activation/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Signal Transduction/immunology
...