Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 2(5): pgad124, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37152675

RESUMEN

In the Arctic, new particle formation (NPF) and subsequent growth processes are the keys to produce Aitken-mode particles, which under certain conditions can act as cloud condensation nuclei (CCNs). The activation of Aitken-mode particles increases the CCN budget of Arctic low-level clouds and, accordingly, affects Arctic climate forcing. However, the growth mechanism of Aitken-mode particles from NPF into CCN range in the summertime Arctic boundary layer remains a subject of current research. In this combined Arctic cruise field and modeling study, we investigated Aitken-mode particle growth to sizes above 80 nm. A mechanism is suggested that explains how Aitken-mode particles can become CCN without requiring high water vapor supersaturation. Model simulations suggest the formation of semivolatile compounds, such as methanesulfonic acid (MSA) in fog droplets. When the fog droplets evaporate, these compounds repartition from CCNs into the gas phase and into the condensed phase of nonactivated Aitken-mode particles. For MSA, a mass increase factor of 18 is modeled. The postfog redistribution mechanism of semivolatile acidic and basic compounds could explain the observed growth of >20 nm h-1 for 60-nm particles to sizes above 100 nm. Overall, this study implies that the increasing frequency of NPF and fog-related particle processing can affect Arctic cloud properties in the summertime boundary layer.

2.
Part Fibre Toxicol ; 19(1): 61, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109745

RESUMEN

BACKGROUND: Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose-response function for assessing health-related effects due to exposure to air pollution. OBJECTIVE: This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD. METHODS: A novel in situ method was applied to experimentally determine the RTD of BC particles among subjects in the highly polluted megacity of Metro Manila, Philippines. Exposure measurements were made for 40 volunteers during public transport and walking. RESULTS: The observed BC exposure concentration was up to 17-times higher than in developed regions. The deposition dose rate (DDR) of BC was up to 3 times higher during commute inside a public transport compared to walking (11.6 versus 4.4 µg hr-1, respectively). This is twice higher than reported in similar studies. The average BC mass deposition fraction (DF) was found to be 43 ± 16%, which can in large be described by individual factors and does not depend on gender. CONCLUSIONS: Commuting by open-sided public transport, commonly used in developing regions, poses a significant health risk due to acquiring extremely high doses of carcinogenic traffic-related pollutants. There is an urgent need to drastically update air pollution mitigation strategies for reduction of dangerously high emissions of BC in urban setting in developing regions. The presented mobile measurement set-up to determine respiratory tract deposition dose is a practical and cost-effective tool that can be used to investigate respiratory deposition in challenging environments.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Carbono , Humanos , Filipinas , Sistema Respiratorio , Hollín/análisis , Hollín/toxicidad , Transportes , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad , Adulto Joven
3.
Environ Pollut ; 248: 295-303, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30802743

RESUMEN

In this study, we present the development of a mobile system to measure real-world total respiratory tract deposition of inhaled ambient black carbon (BC). Such information can be used to supplement the existing knowledge on air pollution-related health effects, especially in the regions where the use of standard methods and intricate instrumentation is limited. The study is divided in two parts. Firstly, we present the design of portable system and methodology to evaluate the exhaled air BC content. We demonstrate that under real-world conditions, the proposed system exhibit negligible particle losses, and can additionally be used to determine the minute ventilation. Secondly, exemplary experimental data from the system is presented. A feasibility study was conducted in the city of La Paz, Bolivia. In a pilot experiment, we found that the cumulative total respiratory tract deposition dose over 1-h commuting trip would result in approximately 2.6 µg of BC. This is up to 5 times lower than the values obtained from conjectural approach (e.g. using physical parameters from previously reported worksheets). Measured total respiratory tract deposited BC fraction varied from 39% to 48% during walking and commuting inside a micro-bus, respectively. To the best of our knowledge, no studies focusing on experimental determination of real-world deposition dose of BC have been performed in developing regions. This can be especially important because the BC mass concentration is significant and determines a large fraction of particle mass concentration. In this work, we propose a potential method, recommendations, as well as the limitations in establishing an easy and relatively cheap way to estimate the respiratory tract deposition of BC.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Exposición por Inhalación/análisis , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Bolivia , Carbono , Ciudades , Humanos , Exposición por Inhalación/estadística & datos numéricos , Sistema Respiratorio/química , Hollín/análisis , Transportes
4.
Sci Total Environ ; 663: 265-274, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30711593

RESUMEN

Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects. In this work, we combine data on fine and ultrafine refractory particle number concentrations (BC proxy), and activity patterns to derive the respiratory tract deposited amounts of BC particles for the population of the highly polluted metropolitan area of Manila, Philippines. We calculated the total DD of refractory particles based on three metrics: refractory particle number, surface area, and mass concentrations. The calculated DD of total refractory particle number in Metro Manila was found to be 1.6 to 17 times higher than average values reported from Europe and the U.S. In the case of Manila, ultrafine particles smaller than 100 nm accounted for more than 90% of the total deposited refractory particle dose in terms of particle number. This work is a first attempt to quantitatively evaluate the DD of refractory particles and raise awareness in assessing pollution-related health effects in developing megacities. We demonstrate that the majority of the population may be highly affected by BC pollution, which is known to have negative health outcomes if no actions are taken to mitigate its emission. For the governments of such metropolitan areas, we suggest to revise currently existing environmental legislation, raise public awareness, and to establish supplementary monitoring of black carbon in parallel to already existing PM10 and PM2.5 measures.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Exposición por Inhalación/análisis , Material Particulado/análisis , Adolescente , Adulto , Niño , Ciudades , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Filipinas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...