Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Hemasphere ; 8(3): e56, 2024 Mar.
Article En | MEDLINE | ID: mdl-38486859

Breakpoint cluster region-Abelson (BCR::ABL1) gene fusion is an essential oncogene in both chronic myeloid leukemia (CML) and Philadelphia-positive (Ph+) B-cell acute lymphoblastic leukemia (B-ALL). While tyrosine kinase inhibitors (TKIs) are effective in up to 95% of CML patients, 50% of Ph+ B-ALL cases do not respond to treatment or relapse. This calls for new therapeutic approaches for Ph+ B-ALL. Previous studies have shown that inhibitors of the thioredoxin (TXN) system exert antileukemic activity against B-ALL cells, particularly in combination with other drugs. Here, we present that peroxiredoxin-1 (PRDX1), one of the enzymes of the TXN system, is upregulated in Ph+ lymphoid as compared to Ph+ myeloid cells. PRDX1 knockout negatively affects the viability of Ph+ B-ALL cells and sensitizes them to TKIs. Analysis of global gene expression changes in imatinib-treated, PRDX1-deficient cells revealed that the nonhomologous end-joining (NHEJ) DNA repair is a novel vulnerability of Ph+ B-ALL cells. Accordingly, PRDX1-deficient Ph+ B-ALL cells were susceptible to NHEJ inhibitors. Finally, we demonstrated the potent efficacy of a novel combination of TKIs, TXN inhibitors, and NHEJ inhibitors against Ph+ B-ALL cell lines and primary cells, which can be further investigated as a potential therapeutic approach for the treatment of Ph+ B-ALL.

2.
Blood Adv ; 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38531056

Neutropenia and neutrophil dysfunction in glycogen storage disease type 1b (GSD1b) are caused by the accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P) in granulocytes. The antidiabetic drug empagliflozin reduces the concentration of 1,5-anhydroglucitol (1,5 AG), thus restoring neutrophil counts and functions, leading to promising results in previous case reports. Here, we present a comprehensive analysis of neutrophil function in seven GSD1b patients and 11 healthy donors, aiming to evaluate the immediate (after 3 months) and long-term (after 12 months) efficacy of empagliflozin compared to the reference treatment with granulocyte-colony stimulating factor (G-CSF). We found that most patients receiving G-CSF remained neutropenic with dysfunctional granulocytes, whereas treatment with empagliflozin increased neutrophil counts and improved functionality by inhibiting apoptosis, restoring phagocytosis and the chemotactic response, normalizing the oxidative burst, and stabilizing cellular and plasma levels of defensins and lactotransferrin. These improvements correlated with the decrease in serum 1,5-AG levels. However, neither G-CSF nor empagliflozin overcame deficiencies in the production of cathelicidin/LL-37 and neutrophil extracellular traps. Given the general improvement promoted by empagliflozin treatment, patients were less susceptible to severe infections. G-CSF injections were therefore discontinued in six patients (and the dose was reduced in the seventh) without adverse effects. Our systematic analysis, the most extensive reported thus far, has demonstrated the superior efficacy of empagliflozin compared to G-CSF, restoring the neutrophil population and normal immune functions. EudraCT 2021-000580-78.

3.
Front Immunol ; 14: 1128581, 2023.
Article En | MEDLINE | ID: mdl-37350970

Congenital defects of neutrophil number or function are associated with a severe infectious phenotype that may require intensive medical attention and interventions to be controlled. While the infectious complications in inherited neutrophil disorders are easily understood much less clear and explained are autoimmune and autoinflammatory phenomena. We survey the clinical burden of autoimmunity/autoinflammation in this setting, search for common patterns, discuss potential mechanisms and emerging treatments.


Autoimmunity , Neutrophils , Autoimmunity/genetics
5.
Pediatr Blood Cancer ; 70(4): e30247, 2023 04.
Article En | MEDLINE | ID: mdl-36734404

An assay for neutrophil-specific antibodies is frequently used in the workup of chronic severe neutropenia and is suggestive of autoimmune, or sporadically alloimmune neutropenia, rather than severe congenital neutropenia (SCN). We analyzed a neutropenia consortium database for the outcomes of antibody testing initiated before receiving genetic diagnosis in Polish SCN cohort. Test results, performed in a single reference laboratory, were available for 14 patients with ELANE-mutated SCN or cyclic neutropenia, and were frequently positive (36%). We note that the trigger for genetic studies in severe neutropenia should not be affected by antibody-positivity and should be clinically driven.


Neutropenia , Neutrophils , Humans , Prevalence , Mutation , Leukocyte Elastase/genetics , Neutropenia/genetics , Autoantibodies
6.
Neoplasia ; 35: 100840, 2023 01.
Article En | MEDLINE | ID: mdl-36288679

We analyzed the pattern of whole-genome copy number alterations (CNAs) and their association with the kinetics of blast clearance during the induction treatment among 195 pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) who displayed intermediate or high levels of minimal residual disease (MRD). Using unsupervised hierarchical clustering of CNAs > 5 Mbp, we dissected three clusters of leukemic samples with distinct kinetics of blast clearance [A - early slow responders (n=105), B - patients with persistent leukemia (n=24), C - fast responders with the low but detectable disease at the end of induction (n=66)] that corresponded with the patients' clinical features, the microdeletion profile,the presence of gene fusions and patients survival. Low incidence of large CNAs and chromosomal numerical aberrations occurred in cluster A which included ALL samples showing recurrent microdeletions within the genes encoding transcription factors (i.e., IKZF1, PAX5, ETV6, and ERG), DNA repair genes (XRCC3 and TOX), or harboring chromothriptic pattern of CNAs. Low hyperdiploid karyotype with trisomy 8 or hypodiploidy was predominantly observed in cluster B. Whereas cluster C included almost exclusively high-hyperdiploid ALL samples with concomitant mutations in RAS pathway genes. The pattern of CNAs influences the kinetics of leukemic cell clearance and selected aberrations affecting DNA repair genes may contribute to BCP-ALL chemoresistance.


Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , DNA Copy Number Variations , Kinetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Neoplasm, Residual , Chromosome Aberrations , Transcription Factors/genetics
7.
Metabolomics ; 18(3): 15, 2022 02 18.
Article En | MEDLINE | ID: mdl-35179657

INTRODUCTION: Patients with hepatocyte nuclear factor-1 beta (HNF1B) mutations present a variable phenotype with two main symptoms: maturity onset diabetes of the young (MODY) and polycystic kidney disease (PKD). OBJECTIVES: Identification of serum metabolites specific for HNF1Bmut and evaluation of their role in disease pathogenesis. METHODS: We recruited patients with HNF1Bmut (N = 10), HNF1Amut (N = 10), PKD: non-dialyzed and dialyzed (N = 8 and N = 13); and healthy controls (N = 12). Serum fingerprinting was performed by LC-QTOF-MS. Selected metabolite was validated by ELISA (enzyme-linked immunosorbent assay) measurements and then biologically connected with HNF1B by in silico analysis. HepG2 were stimulated with lysophosphatidic acid (LPA) and HNF1B gene was knocked down (kd) by small interfering RNA. Transcriptomic analysis with microarrays and western blot measurements were performed. RESULTS: Serum levels of six metabolites including: arachidonic acid, hydroxyeicosatetraenoic acid, linoleamide and three LPA (18:1, 18:2 and 20:4), had AUC (the area under the curve) > 0.9 (HNF1Bmut vs comparative groups). The increased level of LPA was confirmed by ELISA measurements. In HepG2HNF1Bkd cells LPA stimulation lead to downregulation of many pathways associated with cell cycle, lipid metabolism, and upregulation of steroid hormone metabolism and Wnt signaling. Also, increased intracellular protein level of autotaxin was detected in the cells. GSK-3alpha/beta protein level and its phosphorylated ratio were differentially affected by LPA stimulation in HNF1Bkd and control cells. CONCLUSIONS: LPA is elevated in sera of patients with HNF1Bmut. LPA contributes to the pathogenesis of HNF1B-MODY by affecting Wnt/GSK-3 signaling.


Glycogen Synthase Kinase 3 , Kidney Diseases, Cystic , Glycogen Synthase Kinase 3/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Humans , Lysophospholipids , Metabolomics , Mutation/genetics
8.
Hematol Oncol ; 40(3): 430-441, 2022 Aug.
Article En | MEDLINE | ID: mdl-35118711

The strongest predictors of outcome in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) are minimal residual disease (MRD) and specific molecular abnormalities. One unfavorable prognostic factor is the presence of IKZF1 gene aberrations, particularly when co-occurring with high MRD level at the end of induction treatment. The present study determines the predictive value of a recently-defined IKZF1-plus (IKZF1plus ) microdeletion profile in 373 children with BCP-ALL treated according to the ALL-intercontinental Berlin-Frankfurt-Munster protocol 2009 protocol. IKZF1-wild type (IKZF1wt ) patients demonstrated lower leukemic burden parameters than those carrying IKZF1 deletion (IKZF1del [n = 26, 7.0%]) or IKZF1plus pattern (n = 34, 9.1%): (i) median blast percentage at diagnosis (78.0% vs. 86.9% vs. 86.0%; p = 0.021); (ii) median MRD level at day 15 of induction protocol (0.3% vs. 2.1% vs. 0.8%; p = 0.011); (iii) poor steroid response (7.6% vs. 26.5% vs. 12.5%; p = 0.010). Minimal residual disease level at day 33 (MRD33) exceeding 10-4 was more frequently observed in both the IKZF1del and IKZF1plus subgroups than in IKZF1wt patients (n = 9 [36.0%] vs. n = 13 [41.9%] vs. n = 70 [24.0%], p = 0.051). IKZF1plus individuals showed a tendency for a lower MRD reduction between day 15 and 33 compared to IKZF1del patients (p = 0.124). IKZF1del and IKZF1plus patients showed decreased relapse-free survival (HR [95%CI] for IKZF1wt as reference = 2.72 [1.21-6.11] and 2.00 [0.87-4.49], respectively, p = 0.023). Both genetic markers including IKZF1del and IKZF1plus microdeletion profile provide additional predictive value of treatment outcome in childhood BCP-ALL and may contribute to more efficient patient stratification; the same is true in MRD guided protocols, which are based on flow cytometric measurements on day 15 of induction protocol.


Ikaros Transcription Factor , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Ikaros Transcription Factor/genetics , Neoplasm, Residual/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Treatment Outcome
9.
Oncogene ; 41(11): 1600-1609, 2022 03.
Article En | MEDLINE | ID: mdl-35091682

The prognosis for B-cell precursor acute lymphoblastic leukemia patients with Mixed-Lineage Leukemia (MLL) gene rearrangements (MLLr BCP-ALL) is still extremely poor. Inhibition of anti-apoptotic protein BCL-2 with venetoclax emerged as a promising strategy for this subtype of BCP-ALL, however, lack of sufficient responses in preclinical models and the possibility of developing resistance exclude using venetoclax as monotherapy. Herein, we aimed to uncover potential mechanisms responsible for limited venetoclax activity in MLLr BCP-ALL and to identify drugs that could be used in combination therapy. Using RNA-seq, we observed that long-term exposure to venetoclax in vivo in a patient-derived xenograft model leads to downregulation of several tumor protein 53 (TP53)-related genes. Interestingly, auranofin, a thioredoxin reductase inhibitor, sensitized MLLr BCP-ALL to venetoclax in various in vitro and in vivo models, independently of the p53 pathway functionality. Synergistic activity of these drugs resulted from auranofin-mediated upregulation of NOXA pro-apoptotic protein and potent induction of apoptotic cell death. More specifically, we observed that auranofin orchestrates upregulation of the NOXA-encoding gene Phorbol-12-Myristate-13-Acetate-Induced Protein 1 (PMAIP1) associated with chromatin remodeling and increased transcriptional accessibility. Altogether, these results present an efficacious drug combination that could be considered for the treatment of MLLr BCP-ALL patients, including those with TP53 mutations.


Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Auranofin/pharmacology , Auranofin/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Humans , Neoplasm Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Sulfonamides , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Front Immunol ; 12: 653932, 2021.
Article En | MEDLINE | ID: mdl-33968054

Severe congenital neutropenia (SCN) is a rare hematological condition with heterogenous genetic background. Neutrophil elastase (NE) encoded by ELANE gene is mutated in over half of the SCN cases. The role of NE defects in myelocytes maturation arrest in bone marrow is widely investigated; however, the mechanism underlying this phenomenon has still remained unclear. In this review, we sum up the studies exploring mechanisms of neutrophil deficiency, biological role of NE in neutrophil and the effects of ELANE mutation and neutropenia pathogenesis. We also explain the hypotheses presented so far and summarize options of neutropenia therapy.


Congenital Bone Marrow Failure Syndromes/diagnosis , Congenital Bone Marrow Failure Syndromes/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Leukocyte Elastase/deficiency , Neutropenia/congenital , Neutrophils/enzymology , Gene Expression Regulation , Humans , Leukocyte Elastase/chemistry , Leukocyte Elastase/genetics , Leukocyte Elastase/metabolism , Mutation , Neutropenia/diagnosis , Neutropenia/genetics , Protein Processing, Post-Translational , Protein Transport , Signal Transduction , Structure-Activity Relationship
11.
Oncol Lett ; 18(6): 6926-6932, 2019 Dec.
Article En | MEDLINE | ID: mdl-31807194

Resistance to L-asparaginase (L-asp) is a major contributor to poor treatment outcomes of several subtypes of childhood B cell precursor acute lymphoblastic leukemia (BCP-ALL). Asparagine synthetase (ASNS), legumain (LGMN) and cathepsin B (CTSB) serve a key role in L-asp resistance. The association between genetic subtypes of BCP-ALL and the expression of ASNS, LGMN and CTSB may elucidate the mechanisms of treatment failure. Bone marrow samples of 52 children newly diagnosed with BCP-ALL were screened for major genetic abnormalities and ASNS, LGMN and CTSB gene expression levels. The cohort was further divided into groups corresponding to the key genetic aberrations occurring in BCP-ALL: Breakpoint cluster region and Abelson murine leukemia viral oncogene homolog 1 fusion; hyperdiploidy, hypodiploidy, ETS variant 6 and runt-related transcription factor 1 fusion and other BCP-ALL with no primary genetic aberration identified. A subgroup analysis based on the differences in copy number variations demonstrated a significant increase of ASNS, LGMN and CTSB median expression in other BCP-ALL cases with paired box 5 (PAX5) deletion (P=0.0117; P=0.0036; P<0.0001, respectively) compared with those with wild-type PAX5. Patients with high ASNS expression exhibited longer relapse-free survival (RFS) compared with those with low ASNS levels (P=0.0315; HR, 0.19; 95% CI, 0.04-0.86); the 5-year RFS for patients in the high ASNS expression group was 90.15% (95% CI, 87.90-92.40%). Despite the impact on ASNS, LGMN and CTSB expression, PAX5 deletion did not influence RFS in the other BCP-ALL group (P=0.6839). Therefore, the results of the present study revealed high levels of ASNS, LGMN and CTSB expression in the other BCP-ALL group with concomitant PAX5 deletion and no subsequent deterioration in 5-year RFS. High ASNS expression level, as a single factor, was strongly associated with an improved outcome.

12.
Mol Oncol ; 13(5): 1180-1195, 2019 05.
Article En | MEDLINE | ID: mdl-30861284

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogeneous blood cancer characterized by abnormal expansion of immature B cells. Although intensive chemotherapy provides high cure rates in a majority of patients, subtypes harboring certain genetic lesions, such as MLL rearrangements or BCR-ABL1 fusion, remain clinically challenging, necessitating a search for other therapeutic approaches. Herein, we aimed to validate antioxidant enzymes of the thioredoxin system as potential therapeutic targets in BCP-ALL. We observed oxidative stress along with aberrant expression of the enzymes associated with the activity of thioredoxin antioxidant system in BCP-ALL cells. Moreover, we found that auranofin and adenanthin, inhibitors of the thioredoxin system antioxidant enzymes, effectively kill BCP-ALL cell lines and pediatric and adult BCP-ALL primary cells, including primary cells cocultured with bone marrow-derived stem cells. Furthermore, auranofin delayed the progression of leukemia in MLL-rearranged patient-derived xenograft model and prolonged the survival of leukemic NSG mice. Our results unveil the thioredoxin system as a novel target for BCP-ALL therapy, and indicate that further studies assessing the anticancer efficacy of combinations of thioredoxin system inhibitors with conventional anti-BCP-ALL drugs should be continued.


Auranofin/pharmacology , Diterpenes, Kaurane/pharmacology , Drug Delivery Systems , Neoplasm Proteins/antagonists & inhibitors , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Thioredoxins/antagonists & inhibitors , Animals , Cell Line, Tumor , Female , Fusion Proteins, bcr-abl/metabolism , Gene Rearrangement , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , Mice , Mice, Inbred NOD , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasm Proteins/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Thioredoxins/genetics , Thioredoxins/metabolism , Xenograft Model Antitumor Assays
13.
Genes Chromosomes Cancer ; 58(9): 619-626, 2019 09.
Article En | MEDLINE | ID: mdl-30859636

The germline variant at rs3824662 in GATA3 is a risk locus for Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL), the biological subtype of B-cell precursor (BCP)-ALL defined by a distinct gene expression profile and the presence of specific somatic aberrations including rearrangements of CRLF2. In this study, we investigated whether rs3824662 in GATA3 associates with CRLF2 expression in leukemic cells and predicts prognosis in pediatric BCP-ALL patients treated according to the ALL Intercontinental Berlin-Frankfurt-Münster (IC BFM) 2009 (n = 645) and the ALL IC BFM 2002 (n = 216) protocols. High expression of CRLF2 was observed at both protein and mRNA levels (fourfold higher in AA than in CA + CC) among GATA3 AA variant carriers, independent of the presence of P2RY8-CRLF2 fusion. Additionally, the AA variant at rs3824662 was a significant factor affecting minimal residual disease level at the end of induction phase and overall survival regardless of the risk group and the protocol. The germline variant at rs3824662 in GATA3 is a prognostic factor which associates with CRLF2 expression in leukemic cells supporting the hypothesis that GATA3 may have a regulatory effect on the CRLF2 pathway in pediatric BCP-ALL.


GATA3 Transcription Factor/genetics , Polymorphism, Single Nucleotide , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Cytokine/genetics , Cells, Cultured , Child , Child, Preschool , Female , Germ-Line Mutation , Humans , Male , Oncogene Fusion , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, Cytokine/metabolism , Receptors, Purinergic P2Y/genetics , Survival Analysis
14.
Oncotarget ; 9(40): 25971-25982, 2018 May 25.
Article En | MEDLINE | ID: mdl-29899835

We prospectively examined whether surface expression of Cytokine Receptor-Like Factor 2 (CRLF2) on leukemic blasts is associated with survival and induction treatment response in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients. Flow cytometric analysis of bone marrow-derived leukemia cells revealed that 7.51% (29/286) of 386 pediatric BCP-ALL patients were CRLF2-positive (CRLF2pos) at diagnosis. The median minimal residual disease (MRD) was lower in CRLF2pos than CRLF2-negative (CRLF2neg) patients on day 15 (MRD15) after induction therapy [0.01% (0.001-0.42%) vs. 0.45% (0.05-3.50%); p=0.001]. By contrast, the MRD15 was higher in Ikaros family Zinc Finger Protein 1 (IKZF1)-deleted BCP-ALL patients than in BCP-ALL patients without IKZF1 deletions [1.18% (0.06-12.0%) vs 0.33% (0.03-2.6%); p=0.003]. Subgroup analysis showed that MRD15 levels were lower in IKZF1Δ/CRLF2pos patients than in IKZF1Δ/CRLF2neg patients [0.1% (0.02-5.06%) vs. 2.9% (0.25-12%); p=0.005]. Furthermore, MRD15 levels were higher in IKZF1WT/CRLF2neg patients than in IKZF1WT/CRLF2pos patients [0.40% (0.04-2.7%) vs. 0.001% (0.001-0.01%)]. Despite the low MRD15 levels, IKZF1Δ/CRLF2pos patients showed poorer relapse-free survival (RFS) than other patient groups (p=0.003). These findings demonstrate that surface CRLF2 expression is associated with increased risk of relapse in pediatric BCP-ALL patients harboring IKZF1 deletions.

16.
Leuk Lymphoma ; 58(5): 1162-1171, 2017 05.
Article En | MEDLINE | ID: mdl-27756164

The inactivation of tumor suppressor genes located within 9p21 locus (CDKN2A, CDKN2B) occurs in up to 30% of children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL), but its independent prognostic significance remains controversial. In order to investigate the prognostic impact of deletions and promoter methylation within 9p21, 641 children with newly diagnosed BCP-ALL using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) were investigated. A total of 169 (26.4%) microdeletions in 9p21 were detected, of which 71 were homozygous. Patients with CDKN2A homozygous deletions were older at diagnosis (p < .001), more frequently steroid resistant (p = .049), had higher WBC count (p < .001), higher MRD at Day 15 (p = .013) and lower relapse-free survival [p = .028, hazard ratio: 2.28 (95% confidence interval: 1.09-4.76)] than patients without these alterations. CDKN2A homozygous deletions coexisted with IKZF1 and PAX5 deletions (p < .001). In conclusion, CDKN2A homozygous deletions, but not promoter methylation, are associated with poor response to treatment and increased relapse risk of pediatric BCP-ALL.


Gene Deletion , Genes, p16 , Homozygote , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Biomarkers, Tumor , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 9 , CpG Islands , DNA Methylation , Female , Gene Expression , Humans , Male , Neoplasm, Residual/genetics , Ploidies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Prognosis , Promoter Regions, Genetic , Proportional Hazards Models
17.
Diabetologia ; 59(7): 1463-1473, 2016 07.
Article En | MEDLINE | ID: mdl-27059371

AIMS/HYPOTHESIS: We aimed to identify microRNAs (miRNAs) under transcriptional control of the HNF1ß transcription factor, and investigate whether its effect manifests in serum. METHODS: The Polish cohort (N = 60) consisted of 11 patients with HNF1B-MODY, 17 with HNF1A-MODY, 13 with GCK-MODY, an HbA1c-matched type 1 diabetic group (n = 9) and ten healthy controls. Replication was performed in 61 clinically-matched British patients mirroring the groups in the Polish cohort. The Polish cohort underwent miRNA serum level profiling with quantitative real-time PCR (qPCR) arrays to identify differentially expressed miRNAs. Validation was performed using qPCR. To determine whether serum content reflects alterations at a cellular level, we quantified miRNA levels in a human hepatocyte cell line (HepG2) with small interfering RNA knockdowns of HNF1α or HNF1ß. RESULTS: Significant differences (adjusted p < 0.05) were noted for 11 miRNAs. Five of them differed between HNF1A-MODY and HNF1B-MODY, and, amongst those, four (miR-24, miR-27b, miR-223 and miR-199a) showed HNF1B-MODY-specific expression levels in the replication group. In all four cases the miRNA expression level was lower in HNF1B-MODY than in all other tested groups. Areas under the receiver operating characteristic curves ranged from 0.79 to 0.86, with sensitivity and specificity reaching 91.7% (miR-24) and 82.1% (miR-199a), respectively. The cellular expression pattern of miRNA was consistent with serum levels, as all were significantly higher in HNF1α- than in HNF1ß-deficient HepG2 cells. CONCLUSIONS/INTERPRETATION: We have shown that expression of specific miRNAs depends on HNF1ß function. The impact of HNF1ß deficiency was evidenced at serum level, making HNF1ß-dependent miRNAs potentially applicable in the diagnosis of HNF1B-MODY.


Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-beta/metabolism , MicroRNAs/blood , MicroRNAs/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Glycated Hemoglobin/genetics , Glycated Hemoglobin/metabolism , Hep G2 Cells , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Humans , RNA, Small Interfering/genetics , ROC Curve , Real-Time Polymerase Chain Reaction
...