Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cytometry A ; 105(3): 181-195, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37984809

RESUMEN

Multiparameter flow cytometry (MFC) has emerged as a standard method for quantifying measurable residual disease (MRD) in acute myeloid leukemia. However, the limited number of available channels on conventional flow cytometers requires the division of a diagnostic sample into several tubes, restricting the number of cells and the complexity of immunophenotypes that can be analyzed. Full spectrum flow cytometers overcome this limitation by enabling the simultaneous use of up to 40 fluorescent markers. Here, we used this approach to develop a good laboratory practice-conform single-tube 19-color MRD detection assay that complies with recommendations of the European LeukemiaNet Flow-MRD Working Party. We based our assay on clinically-validated antibody clones and evaluated its performance on an IVD-certified full spectrum flow cytometer. We measured MRD and normal bone marrow samples and compared the MRD data to a widely used reference MRD-MFC panel generating highly concordant results. Using our newly developed single-tube panel, we established reference values in healthy bone marrow for 28 consensus leukemia-associated immunophenotypes and introduced a semi-automated dimensionality-reduction, clustering and cell type identification approach that aids the unbiased detection of aberrant cells. In summary, we provide a comprehensive full spectrum MRD-MFC workflow with the potential for rapid implementation for routine diagnostics due to reduced cell requirements and ease of data analysis with increased reproducibility in comparison to conventional FlowMRD routines.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Citometría de Flujo/métodos , Reproducibilidad de los Resultados , Leucemia Mieloide Aguda/diagnóstico , Médula Ósea/metabolismo , Neoplasia Residual/diagnóstico
3.
Leukemia ; 37(1): 79-90, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517672

RESUMEN

Relapse is a major challenge to therapeutic success in acute myeloid leukemia (AML) and can be partly associated with heterogeneous leukemic stem cell (LSC) properties. In the murine Hoxa9/Meis1-dependent (H9M) AML model, LSC potential lies in three defined immunophenotypes, including Lin-cKit+ progenitor cells (Lin-), Gr1+CD11b+cKit+ myeloid cells, and lymphoid cells (Lym+). Previous reports demonstrated their interconversion and distinct drug sensitivities. In contrast, we here show that H9M AML is hierarchically organized. We, therefore, tracked the developmental potential of LSC phenotypes. This unexpectedly revealed a substantial fraction of Lin- LSCs that failed to regenerate Lym+ LSCs, and that harbored reduced leukemogenic potential. However, Lin- LSCs capable of producing Lym+ LSCs as well as Lym+ LSCs triggered rapid disease development suggestive of their high relapse-driving potential. Transcriptional analyses revealed that B lymphoid master regulators, including Sox4 and Bach2, correlated with Lym+ LSC development and presumably aggressive disease. Lentiviral overexpression of Sox4 and Bach2 induced dedifferentiation of H9M cells towards a lineage-negative state in vitro as the first step of lineage conversion. This work suggests that the potency to initiate a partial B lymphoid primed transcriptional program as present in infant AML correlates with aggressive disease and governs the H9M LSC hierarchy.


Asunto(s)
Leucemia Mieloide Aguda , Células Precursoras de Linfocitos B , Animales , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Diferenciación Celular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Células Madre Neoplásicas
4.
Cells ; 11(24)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552809

RESUMEN

Clonal heterogeneity in acute myeloid leukemia (AML) forms the basis for treatment failure and relapse. Attempts to decipher clonal evolution and clonal competition primarily depend on deep sequencing approaches. However, this prevents the experimental confirmation of the identified disease-relevant traits on the same cell material. Here, we describe the development and application of a complex fluorescent genetic barcoding (cFGB) lentiviral vector system for the labeling and subsequent multiplex tracking of up to 48 viable AML clones by flow cytometry. This approach allowed the visualization of longitudinal changes in the in vitro growth behavior of multiplexed color-coded AML clones for up to 137 days. Functional studies of flow cytometry-enriched clones documented their stably inherited increase in competitiveness, despite the absence of growth-promoting mutations in exome sequencing data. Transplantation of aliquots of a color-coded AML cell mix into mice revealed the initial engraftment of similar clones and their subsequent differential distribution in the animals over time. Targeted RNA-sequencing of paired pre-malignant and de novo expanded clones linked gene sets associated with Myc-targets, embryonic stem cells, and RAS signaling to the foundation of clonal expansion. These results demonstrate the potency of cFGB-mediated clonal tracking for the deconvolution of verifiable driver-mechanisms underlying clonal selection in leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Animales , Ratones , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Células Clonales , Evolución Clonal/genética , Mutación/genética , Fenotipo
5.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502319

RESUMEN

HOXA9 and MEIS1 are frequently upregulated in acute myeloid leukemia (AML), including those with MLL-rearrangement. Because of their pivotal role in hemostasis, HOXA9 and MEIS1 appear non-druggable. We, thus, interrogated gene expression data of pre-leukemic (overexpressing Hoxa9) and leukemogenic (overexpressing Hoxa9 and Meis1; H9M) murine cell lines to identify cancer vulnerabilities. Through gene expression analysis and gene set enrichment analyses, we compiled a list of 15 candidates for functional validation. Using a novel lentiviral multiplexing approach, we selected and tested highly active sgRNAs to knockout candidate genes by CRISPR/Cas9, and subsequently identified a H9M cell growth dependency on the cytosolic phospholipase A2 (PLA2G4A). Similar results were obtained by shRNA-mediated suppression of Pla2g4a. Remarkably, pharmacologic inhibition of PLA2G4A with arachidonyl trifluoromethyl ketone (AACOCF3) accelerated the loss of H9M cells in bulk cultures. Additionally, AACOCF3 treatment of H9M cells reduced colony numbers and colony sizes in methylcellulose. Moreover, AACOCF3 was highly active in human AML with MLL rearrangement, in which PLA2G4A was significantly higher expressed than in AML patients without MLL rearrangement, and is sufficient as an independent prognostic marker. Our work, thus, identifies PLA2G4A as a prognostic marker and potential therapeutic target for H9M-dependent AML with MLL-rearrangement.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Sistemas CRISPR-Cas , Regulación Neoplásica de la Expresión Génica , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/patología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Fosfolipasas A2 Grupo IV/genética , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Células Tumorales Cultivadas
6.
Hum Gene Ther ; 32(19-20): 1280-1294, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34139894

RESUMEN

Hematopoietic stem cells (HSCs) represent a rare cell population of particular interest for biomedical research and regenerative medicine. Various marker combinations enable the isolation of HSCs, but fail to reach purity in transplantation assays. To reduce animal consumption, we developed a multiplexing system based on lentiviral fluorescent genetic barcoding (FGB) to enable the parallel characterization of multiple HSC samples within single animals. While previous FGB-mediated HSC multiplexing experiments achieved high in vitro gene marking rates, in vivo persistence of transduced cells remained suboptimal. Thus, we aimed to optimize vector design and gene transfer protocols to demonstrate the applicability of FGB for functional characterization of two highly similar HSC populations in a reduced number of mice. We developed a set of six new lentiviral FGB vectors, utilizing individual and combinatorial expression of Azami Green, mCherry, and YFP derivatives. Gene transfer rates were optimized by overnight transduction of prestimulated HSCs with titrated vector doses. Populations for competitive transplantation experiments were identified by immunophenotyping murine HSCs. This identified an LSK-SLAM- (Lin-Sca-1+cKit+CD48-CD150+EPCR-) cell subpopulation that lacks EPCR expression and exhibits prospectively reduced self-renewal potential compared with prototypical ESLAM (CD45+EPCR+CD48-CD150+) HSCs. We monitored 30 data points per HSC-subpopulation in two independent experiments (each n = 5) after cotransplantation of three uniquely color-coded ESLAM and LSK-SLAM- samples per recipient. While the first experiment was hampered by data fluctuations, increasing cell numbers and exchange of the internal promoter in the second experiment led to 74.4% chimerism, with 87.1% of fluorescent cells derived from ESLAM HSCs. Furthermore, ESLAM-derived cells produced 88.1% of myeloid cells, which is indicative of their origin from long-term repopulating HSCs. This work verifies the importance of EPCR for long-term repopulating HSCs and demonstrates the applicability of our optimized FGB-driven multiplexing approach for the efficient characterization of blood cell populations in biomedical research.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Vectores Genéticos/genética , Inmunofenotipificación , Ratones
7.
Cells ; 9(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003308

RESUMEN

Previous gene therapy trials for X-linked chronic granulomatous disease (X-CGD) lacked long-term engraftment of corrected hematopoietic stem and progenitor cells (HSPCs). Chronic inflammation and high levels of interleukin-1 beta (IL1B) might have caused aberrant cell cycling in X-CGD HSPCs with a concurrent loss of their long-term repopulating potential. Thus, we performed a targeted CRISPR-Cas9-based sgRNA screen to identify candidate genes that counteract the decreased repopulating capacity of HSPCs during gene therapy. The candidates were validated in a competitive transplantation assay and tested in a disease context using IL1B-challenged or X-CGD HSPCs. The sgRNA screen identified Mapk14 (p38) as a potential target to increase HSPC engraftment. Knockout of p38 prior to transplantation was sufficient to induce a selective advantage. Inhibition of p38 increased expression of the HSC homing factor CXCR4 and reduced apoptosis and proliferation in HSPCs. For potential clinical translation, treatment of IL1B-challenged or X-CGD HSPCs with a p38 inhibitor led to a 1.5-fold increase of donor cell engraftment. In summary, our findings demonstrate that p38 may serve as a potential druggable target to restore engraftment of HSPCs in the context of X-CGD gene therapy.


Asunto(s)
Enfermedad Granulomatosa Crónica/terapia , Células Madre Hematopoyéticas/metabolismo , Interleucina-1beta/genética , Receptores CXCR4/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Sistemas CRISPR-Cas/genética , Células Cultivadas , Modelos Animales de Enfermedad , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Enfermedades Genéticas Ligadas al Cromosoma X/terapia , Terapia Genética/métodos , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/patología , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/patología , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/terapia , Ratones , ARN/genética , ARN/uso terapéutico , Transducción de Señal/genética
8.
Blood ; 136(5): 596-609, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32270193

RESUMEN

Overcoming drug resistance and targeting cancer stem cells remain challenges for curative cancer treatment. To investigate the role of microRNAs (miRNAs) in regulating drug resistance and leukemic stem cell (LSC) fate, we performed global transcriptome profiling in treatment-naive chronic myeloid leukemia (CML) stem/progenitor cells and identified that miR-185 levels anticipate their response to ABL tyrosine kinase inhibitors (TKIs). miR-185 functions as a tumor suppressor: its restored expression impaired survival of drug-resistant cells, sensitized them to TKIs in vitro, and markedly eliminated long-term repopulating LSCs and infiltrating blast cells, conferring a survival advantage in preclinical xenotransplantation models. Integrative analysis with mRNA profiles uncovered PAK6 as a crucial target of miR-185, and pharmacological inhibition of PAK6 perturbed the RAS/MAPK pathway and mitochondrial activity, sensitizing therapy-resistant cells to TKIs. Thus, miR-185 presents as a potential predictive biomarker, and dual targeting of miR-185-mediated PAK6 activity and BCR-ABL1 may provide a valuable strategy for overcoming drug resistance in patients.


Asunto(s)
Resistencia a Antineoplásicos/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , MicroARNs/genética , Células Madre Neoplásicas/patología , Quinasas p21 Activadas/genética , Animales , Regulación Leucémica de la Expresión Génica/genética , Xenoinjertos , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Ratones SCID , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/fisiología , Quinasas p21 Activadas/metabolismo
9.
Exp Hematol ; 67: 10-17, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30098396

RESUMEN

Hematopoiesis depends on the controlled differentiation of hematopoietic stem cells to mature cells with defined functions. Although each cell population within the hematopoietic hierarchy can be described by phenotypic markers, isolation of marker pure populations does not necessarily result in cells with homogeneous functionality. However, techniques that enable the efficient characterization of cell behavior with high resolution are limited. Although single-cell transplantation assays demand high mouse numbers and workload, sequencing-based fate tracking techniques require the destruction of the host cell, substantial financial resources, and bioinformatics expertise and suffer from a delay between sample acquisition and data interpretation. To make analyses more efficient, several laboratories recently developed flow cytometry-driven, fluorescence-based multiplexing approaches that enable parallel analysis of longitudinal behavior from multiple clonally derived cells or polyclonal populations. Although these fluorescent genetic barcoding systems are still in their infancy, their power lies in the use of retroviral vectors for gene marking of multiple populations with unique fluorescent color codes. Tracing of color-coded cells by flow cytometry guarantees the accessibility of information on population behavior in real time and at low cost, supports the prospective isolation of cells for downstream analyses, and can be applied to cell line models as well as to human- and animal-derived primary cells. Here, we discuss recent progress in the emerging field of fluorescent genetic barcoding for longitudinal multiplex cell tracking in biomedical research and how this technique will help to uncover mechanisms regulating cell behavior with clonal resolution in a reduced number of experimental samples.


Asunto(s)
Separación Celular/métodos , Rastreo Celular/métodos , Citometría de Flujo/métodos , Genes Reporteros , Proteínas Luminiscentes/análisis , Animales , Animales Modificados Genéticamente , Línea Celular , Linaje de la Célula , Células Clonales , Sistemas de Computación , Vectores Genéticos , Glioblastoma/patología , Hematopoyesis , Humanos , Lentivirus/genética , Proteínas Luminiscentes/genética , Ratones , Microscopía Fluorescente
10.
Mol Ther Methods Clin Dev ; 10: 156-164, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30101153

RESUMEN

Enhanced gene transfer efficiencies and higher yields of transplantable transduced human hematopoietic stem cells are continuing goals for improving clinical protocols that use stemcell-based gene therapies. Here, we examined the effect of the HSC agonist UM171 on these endpoints in both in vitro and in vivo systems. Using a 22-hr transduction protocol, we found that UM171 significantly enhances both the lentivirus-mediated transduction and yield of CD34+ and CD34+CD45RA- hematopoietic cells from human cord blood to give a 6-fold overall higher recovery of transduced hematopoietic stem cells, including cells with long-term lympho-myeloid repopulating activity in immunodeficient mice. The ability of UM171 to enhance gene transfer to primitive cord blood hematopoietic cells extended to multiple lentiviral pseudotypes, gamma retroviruses, and non-integrating lentiviruses and to adult bone marrow cells. UM171, thus, provides an interesting reagent for improving the ex vivo production of gene-modified cells and for reducing requirements of virus for a broad range of applications.

11.
Nucleic Acids Res ; 45(17): 10259-10269, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973459

RESUMEN

Functional impairment or complete loss of type VII collagen, caused by mutations within COL7A1, lead to the severe recessive form of the skin blistering disease dystrophic epidermolysis bullosa (RDEB). Here, we successfully demonstrate RNA trans-splicing as an auspicious repair option for mutations located in a wide range of exons by fully converting an RDEB phenotype in an ex vivo pre-clinical mouse model based on xenotransplantation. Via a self-inactivating (SIN) lentiviral vector a 3' RNA trans-splicing molecule, capable of replacing COL7A1 exons 65-118, was delivered into type VII collagen deficient patient keratinocytes, carrying a homozygous mutation in exon 80 (c.6527insC). Following vector integration, protein analysis of an isolated corrected single cell clone showed secretion of the corrected type VII collagen at similar levels compared to normal keratinocytes. To confirm full phenotypic and long-term correction in vivo, patches of skin equivalents expanded from the corrected cell clone were grafted onto immunodeficient mice. Immunolabelling of 12 weeks old skin specimens showed strong expression of human type VII collagen restricted to the basement membrane zone. We demonstrate that the RNA trans-splicing technology combined with a SIN lentiviral vector is suitable for an ex vivo molecular therapy approach and thus adaptable for clinical application.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/terapia , Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , ARN/uso terapéutico , Trans-Empalme , Animales , Membrana Basal/metabolismo , Células Cultivadas , Colágeno Tipo VII/deficiencia , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Vectores Genéticos/genética , Vectores Genéticos/farmacología , Xenoinjertos , Humanos , Queratinocitos/metabolismo , Queratinocitos/trasplante , Lentivirus/genética , Ratones , Modelos Animales , ARN/administración & dosificación , ARN/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Trasplante de Piel , Transgenes
12.
Retrovirology ; 14(1): 48, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29047401

RESUMEN

The authors wish to apologize for an error within the scale bar of the microarray heatmap in Additional File 5 of the supplementary information. Two values were incorrectly displayed on the scale bar (11 instead of 10 and 13 instead of 12).

13.
Mol Ther Methods Clin Dev ; 6: 54-65, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28664166

RESUMEN

Tracking the behavior of leukemic samples both in vitro and in vivo plays an increasingly large role in efforts to better understand the leukemogenic processes and the effects of potential new therapies. Such work can be accelerated and made more efficient by methodologies enabling the characterization of leukemia samples in multiplex assays. We recently developed three sets of lentiviral fluorescent genetic barcoding (FGB) vectors that create 26, 14, and 6 unique immunophenotyping-compatible color codes from GFP-, yellow fluorescent protein (YFP)-, and monomeric kusabira orange 2 (mKO2)-derived fluorescent proteins. These vectors allow for labeling and tracking of individual color-coded cell populations in mixed samples by real-time flow cytometry. Using the prototypical Hoxa9/Meis1 murine model of acute myeloid leukemia, we describe the application of the 6xFGB vector system for assessing leukemic cell characteristics in multiplex assays. By transplanting color-coded cell mixes, we investigated the competitive growth behavior of individual color-coded populations, determined leukemia-initiating cell frequencies, and assessed the dose-dependent potential of cells exposed to the histone deacetylase inhibitor Entinostat for bone marrow homing. Thus, FGB provides a useful tool for the multiplex characterization of leukemia samples in a wide variety of applications with a concomitant reduction in workload, processing times, and mouse utilization.

14.
Retrovirology ; 14(1): 34, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28569216

RESUMEN

BACKGROUND: Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. RESULTS: In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. CONCLUSIONS: We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC.


Asunto(s)
Vectores Genéticos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/virología , Lentivirus/genética , Animales , Proteínas de la Cápside/genética , Proteínas Portadoras/genética , Línea Celular , Ciclofilina A/metabolismo , Ciclosporina/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , VIH-1/genética , Interacciones Huésped-Patógeno , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Lentivirus/fisiología , Leupeptinas/farmacología , Ratones , Transcripción Reversa/efectos de los fármacos , Transducción Genética , Integración Viral/efectos de los fármacos , Internalización del Virus
15.
Mol Ther ; 25(3): 606-620, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28253481

RESUMEN

Retroviral integration site analysis and barcoding have been instrumental for multiplex clonal fate mapping, although their use imposes an inherent delay between sample acquisition and data analysis. Monitoring of multiple cell populations in real time would be advantageous, but multiplex assays compatible with flow cytometric tracking of competitive growth behavior are currently limited. We here describe the development and initial validation of three generations of lentiviral fluorescent genetic barcoding (FGB) systems that allow the creation of 26, 14, or 6 unique labels. Color-coded populations could be tracked in multiplex in vitro assays for up to 28 days by flow cytometry using all three vector systems. Those involving lower levels of multiplexing eased color-code generation and the reliability of vector expression and enabled functional in vitro and in vivo studies. In proof-of-principle experiments, FGB vectors facilitated in vitro multiplex screening of microRNA (miRNA)-induced growth advantages, as well as the in vivo recovery of color-coded progeny of murine and human hematopoietic stem cells. This novel series of FGB vectors provides new tools for assessing comparative growth properties in in vitro and in vivo multiplexing experiments, while simultaneously allowing for a reduction in sample numbers by up to 26-fold.


Asunto(s)
Rastreo Celular/métodos , Expresión Génica , Genes Reporteros , Vectores Genéticos/genética , Lentivirus/genética , Proteínas Luminiscentes/genética , Diferenciación Celular , Codón , Citometría de Flujo , Orden Génico , Técnicas de Transferencia de Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Proteínas Luminiscentes/metabolismo , MicroARNs/genética , Reproducibilidad de los Resultados , Transducción Genética
16.
Blood Adv ; 1(24): 2225-2235, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29296870

RESUMEN

Myeloid ecotropic viral integration site 1 (MEIS1), a HOX transcription cofactor, is a critical regulator of normal hematopoiesis, and its overexpression is implicated in a wide range of leukemias. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) gene-editing system, we generated a knock-in transgenic mouse line in which a green fluorescent protein (GFP) reporter and a hemagglutinin (HA) epitope tag are inserted near the translational start site of endogenous Meis1. This novel reporter strain readily enables tracking of MEIS1 expression at single-cell-level resolution via the fluorescence reporter GFP, and facilitates MEIS1 detection and purification via the HA epitope tag. This new Meis1 reporter mouse line provides powerful new approaches to track Meis1-expressing hematopoietic cells and to explore Meis1 function and regulation during normal and leukemic hematopoiesis.

17.
Methods Mol Biol ; 1448: 23-39, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27317170

RESUMEN

Drug-inducible recombination based on flippase (FLP) is frequently used in animal models and in transgenic cell lines to initiate or to abrogate gene expression. Although the system is highly efficient, functional gene analyses depend on the availability of suitable animal models. In contrast, lentiviral vectors are readily available and versatile tools for the transfer of genetic information into a wide variety of target cells, and can be produced at high titer in a timely manner. To combine the advantages of both approaches, we generated a tight, drug-controlled FLP recombinase consisting of a 5' FKBP12 derived conditional destruction domain and a 3' estrogen receptor ligand binding (ERT2) domain. We successfully constructed lentiviral vectors expressing drug-controlled FLP in combination with a fluorescent reporter for recombination of FLP recognition target (FRT) sites located in trans as well as with target alleles located in cis (all-in-one configuration). In this chapter, we describe the design of the drug controlled FLP recombinase, the construction of molecular switches consisting of FLP expressing lentiviral vectors for inducible recombination of target sites located in cis and in trans, as well as the details for the characterization of lentiviral FLP vectors in cell lines.


Asunto(s)
ADN Nucleotidiltransferasas/genética , Sustitución de Medicamentos/métodos , Biología Molecular/métodos , Recombinación Genética , Animales , Expresión Génica , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Unión Proteica , Receptores de Estrógenos/genética
18.
Sci Transl Med ; 8(326): 326ra22, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26888430

RESUMEN

Recent studies highlighted long noncoding RNAs (lncRNAs) to play an important role in cardiac development. However, understanding of lncRNAs in cardiac diseases is still limited. Global lncRNA expression profiling indicated that several lncRNA transcripts are deregulated during pressure overload-induced cardiac hypertrophy in mice. Using stringent selection criteria, we identified Chast (cardiac hypertrophy-associated transcript) as a potential lncRNA candidate that influences cardiomyocyte hypertrophy. Cell fractionation experiments indicated that Chast is specifically up-regulated in cardiomyocytes in vivo in transverse aortic constriction (TAC)-operated mice. In accordance, CHAST homolog in humans was significantly up-regulated in hypertrophic heart tissue from aortic stenosis patients and in human embryonic stem cell-derived cardiomyocytes upon hypertrophic stimuli. Viral-based overexpression of Chast was sufficient to induce cardiomyocyte hypertrophy in vitro and in vivo. GapmeR-mediated silencing of Chast both prevented and attenuated TAC-induced pathological cardiac remodeling with no early signs on toxicological side effects. Mechanistically, Chast negatively regulated Pleckstrin homology domain-containing protein family M member 1 (opposite strand of Chast), impeding cardiomyocyte autophagy and driving hypertrophy. These results indicate that Chast can be a potential target to prevent cardiac remodeling and highlight a general role of lncRNAs in heart diseases.


Asunto(s)
ARN Largo no Codificante/metabolismo , Remodelación Ventricular/genética , Animales , Secuencia de Bases , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Presión , ARN Largo no Codificante/genética , Transducción de Señal , Investigación Biomédica Traslacional
19.
Curr Gene Ther ; 15(3): 245 - 254, 2015 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-25963902

RESUMEN

The article entitled "Novel and safer self-inactivating vectors for gene therapy of Wiskott-Aldrich Syndrome", by E. G. Coci1, T. Maetzig, D. Zychlinski, M. Rothe, J. D. Suerth, C. Klein and A.Schambach has been retracted, on the request of the authors.Kindly see Bentham Science Policy on Article retraction at the link given below:(https://www.benthamscience.com/journals/current-medical-imaging/author-guidelines/).It is a pre-requisite for authors to declare explicitly that their work is original and has not been published elsewhere. Authors are advised to properly cite the original source to avoid plagiarism and copyright violation. As such this article represents a severe abuse of the scientific publishing system. Bentham Science Publishers takes a very strong view on this matter and apologizes to the readers of the journal for any inconvenience this may cause.

20.
Cytometry A ; 87(5): 405-18, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25728583

RESUMEN

Lentiviral and gammaretroviral vectors are state-of-the-art tools for transgene expression within target cells. The integration of these vectors can be deliberately suppressed to derive a transient gene expression system based on extrachromosomal circular episomes with intact coding regions. These episomes can be used to deliver DNA templates and to express RNA or protein. Importantly, transient gene transfer avoids the genotoxic side effects of integrating vectors. Restricting their applicability, episomes are rapidly lost upon dilution in dividing target cells. Addressing this limitation, we could establish comparably stable percentages of transgene-positive cells over prolonged time periods in proliferating cells by repeated transductions. Flow cytometry was applied for kinetic analyses to decipher the impact of individual parameters on the kinetics of fluoroprotein expression after episomal retransduction and to visualize sequential and simultaneous transfer of heterologous fluoroproteins. Expression windows could be exactly timed by the number of transduction steps. The kinetics of signal loss was affected by the cell proliferation rate. The transfer of genes encoding fluoroproteins with different half-lives revealed a major impact of protein stability on temporal signal distribution and accumulation, determining optimal retransduction intervals. In addition, sequential transductions proved broad applicability in different cell types and using different envelope pseudotypes without receptor overload. Stable percentages of cells coexpressing multiple transgenes could be generated upon repeated coadministration of different episomal vectors. Alternatively, defined patterns of transgene expression could be recapitulated by sequential transductions. Altogether, we established a methodology to control and adjust a temporally defined window of transgene expression using retroviral episomal vectors. Combined with the highly efficient cell entry of these vectors while avoiding integration, the developed technology is of great significance for a broad panel of applications, including transcription-factor-based induced cell fate conversion and controlled transfer of genetically encoded RNA- or protein-based drugs.


Asunto(s)
Expresión Génica , Vectores Genéticos , Transducción Genética/métodos , Humanos , Cinética , Lentivirus/genética , Plásmidos/genética , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...