Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(4): 527-538, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37012406

RESUMEN

The placenta is a fast-evolving organ with large morphological and histological differences across eutherians, but the genetic changes driving placental evolution have not been fully elucidated. Transposable elements, through their capacity to quickly generate genetic variation and affect host gene regulation, may have helped to define species-specific trophoblast gene expression programs. Here we assess the contribution of transposable elements to human trophoblast gene expression as enhancers or promoters. Using epigenomic data from primary human trophoblast and trophoblast stem-cell lines, we identified multiple endogenous retrovirus families with regulatory potential that lie close to genes with preferential expression in trophoblast. These largely primate-specific elements are associated with inter-species gene expression differences and are bound by transcription factors with key roles in placental development. Using genetic editing, we demonstrate that several elements act as transcriptional enhancers of important placental genes, such as CSF1R and PSG5. We also identify an LTR10A element that regulates ENG expression, affecting secretion of soluble endoglin, with potential implications for preeclampsia. Our data show that transposons have made important contributions to human trophoblast gene regulation, and suggest that their activity may affect pregnancy outcomes.


Asunto(s)
Retrovirus Endógenos , Trofoblastos , Animales , Humanos , Embarazo , Femenino , Trofoblastos/metabolismo , Placenta/metabolismo , Retrovirus Endógenos/genética , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica , Expresión Génica
2.
Curr Top Microbiol Immunol ; 436: 51-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36243839

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) catalyse the synthesis of specific members of the family of lipids collectively known as 'phosphoinositides'. These PI3Ks products can in turn modulate activation of many downstream proteins, ultimately regulating several cellular processes. Mammalian cells possess eight PI3Ks which are grouped into three classes based on their structure and substrate specificity. While class I and III PI3Ks have been extensively investigated, our understanding of the three class II members has only improved in most recent years. This chapter will summarise some of the available information on mammalian class II PI3Ks and their physiological roles.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas Clase II/genética , Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles
3.
J Thromb Haemost ; 19(12): 3095-3112, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34390534

RESUMEN

BACKGROUND: Platelets circulate in the blood of healthy individuals for approximately 7-10 days regulated by finely balanced processes of production and destruction. As platelets are anucleate we reasoned that their protein composition would change as they age and that this change would be linked to alterations in structure and function. OBJECTIVE: To isolate platelets of different ages from healthy individuals to test the hypothesis that changes in protein content cause alterations in platelet structure and function. METHODS: Platelets were separated according to thiazole orange fluorescence intensity as a surrogate indicator of mRNA content and so a marker of platelet age and then subjected to proteomics, imaging, and functional assays to produce an in-depth analysis of platelet composition and function. RESULTS: Total protein content was 45 ± 5% lower in old platelets compared to young platelets. Predictive proteomic pathway analysis identified associations with 28 biological processes, notably higher hemostasis in young platelets whilst apoptosis and senescence were higher in old platelets. Further studies confirmed platelet ageing was linked to a decrease in cytoskeletal protein and associated capability to spread and adhere, a reduction in mitochondria number, and lower calcium dynamics and granule secretion. CONCLUSIONS: Our findings demonstrate changes in protein content are linked to alterations in function as platelets age. This work delineates physical and functional changes in platelets as they age and serves as a base to examine differences associated with altered mean age of platelet populations in conditions such as immune thrombocytopenia and diabetes.


Asunto(s)
Proteoma , Trombocitopenia , Plaquetas , Hemostasis , Humanos , Proteómica
4.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808215

RESUMEN

Cutaneous squamous cell carcinomas (cSCCs) account for about 20% of keratinocyte carcinomas, the most common cancer in the UK. Therapeutic options for cSCC patients who develop metastasis are limited and a better understanding of the biochemical pathways involved in cSCC development/progression is crucial to identify novel therapeutic targets. Evidence indicates that the phosphoinositide 3-kinases (PI3Ks)/Akt pathway plays an important role, in particular in advanced cSCC. Questions remain of whether all four PI3K isoforms able to activate Akt are involved and whether selective inhibition of specific isoform(s) might represent a more targeted strategy. Here we determined the sensitivity of four patient-derived cSCC cell lines to isoform-specific PI3K inhibitors to start investigating their potential therapeutic value in cSCC. Parallel experiments were performed in immortalized keratinocyte cell lines. We observed that pan PI3Ks inhibition reduced the growth/viability of all tested cell lines, confirming the crucial role of this pathway. Selective inhibition of the PI3K isoform p110α reduced growth/viability of keratinocytes and of two cSCC cell lines while affecting the other two only slightly. Importantly, p110α inhibition reduced Akt phosphorylation in all cSCC cell lines. These data indicate that growth and viability of the investigated cSCC cells display differential sensitivity to isoform-specific PI3K inhibitors.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromonas/farmacología , Humanos , Imidazoles/farmacología , Isoenzimas , Queratinocitos/efectos de los fármacos , Queratinocitos/enzimología , Morfolinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Tiazoles/farmacología , Tiazolidinedionas/farmacología
6.
Molecules ; 25(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198256

RESUMEN

Several studies have identified specific signalling functions for inositol polyphosphates (IPs) in different cell types and have led to the accumulation of new information regarding their cellular roles as well as new insights into their cellular production. These studies have revealed that interaction of IPs with several proteins is critical for stabilization of protein complexes and for modulation of enzymatic activity. This has not only revealed their importance in regulation of several cellular processes but it has also highlighted the possibility of new pharmacological interventions in multiple diseases, including cancer. In this review, we describe some of the intracellular roles of IPs and we discuss the pharmacological opportunities that modulation of IPs levels can provide.


Asunto(s)
Fosfatos de Inositol/metabolismo , Inositol/química , Ácido Fítico/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/química , Endocitosis , Exocitosis , Humanos , Fosfatos de Inositol/química , Ratones , Ácido Fítico/química , Agregación Plaquetaria , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Replicación Viral
7.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003448

RESUMEN

Signaling pathways regulated by the phosphoinositide 3-kinase (PI3K) enzymes have a well-established role in cancer development and progression. Over the past 30 years, the therapeutic potential of targeting this pathway has been well recognized, and this has led to the development of a multitude of drugs, some of which have progressed into clinical trials, with few of them currently approved for use in specific cancer settings. While many inhibitors compete with ATP, hence preventing the catalytic activity of the kinases directly, a deep understanding of the mechanisms of PI3K-dependent activation of its downstream effectors led to the development of additional strategies to prevent the initiation of this signaling pathway. This review summarizes previously published studies that led to the identification of inositol polyphosphates as promising parent molecules to design novel inhibitors of PI3K-dependent signals. We focus our attention on the inhibition of protein-membrane interactions mediated by binding of pleckstrin homology domains and phosphoinositides that we proposed 20 years ago as a novel therapeutic strategy.


Asunto(s)
Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositoles/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Transducción de Señal/efectos de los fármacos , Humanos , Inositol/química , Inositol/uso terapéutico , Fosfatidilinositol 3-Quinasa/efectos de los fármacos , Dominios Homólogos a Pleckstrina/efectos de los fármacos
8.
Cancers (Basel) ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718079

RESUMEN

Expression of ATP-binding cassette (ABC) transporters has long been implicated in cancer chemotherapy resistance. Increased expression of the ABCC subfamily transporters has been reported in prostate cancer, especially in androgen-resistant cases. ABCC transporters are known to efflux drugs but, recently, we have demonstrated that they can also have a more direct role in cancer progression. The pharmacological potential of targeting ABCC1, however, remained to be assessed. In this study, we investigated whether the blockade of ABCC1 affects prostate cancer cell proliferation using both in vitro and in vivo models. Our data demonstrate that pharmacological inhibition of ABCC1 reduced prostate cancer cell growth in vitro and potentiated the effects of Docetaxel in vitro and in mouse models of prostate cancer in vivo. Collectively, these data identify ABCC1 as a novel and promising target in prostate cancer therapy.

9.
FASEB J ; 34(8): 10027-10040, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32592197

RESUMEN

Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2 , a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here, we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX-1-ko mice produced similar eicosanoid profiles in vitro: for example, formation of TxA2 , prostaglandin (PG) F2α , 11-hydroxyeicosatraenoic acid (HETE), and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis (IPA) predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less pro-thrombotic TxA2 and PGE2 . Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen antithrombotic protection.


Asunto(s)
Aspirina/farmacología , Plaquetas/metabolismo , Ciclooxigenasa 1/fisiología , Inhibidores de la Ciclooxigenasa/farmacología , Eicosanoides/metabolismo , Proteínas de la Membrana/fisiología , Trombosis/metabolismo , Animales , Ácido Araquidónico/administración & dosificación , Plaquetas/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trombosis/tratamiento farmacológico , Trombosis/patología
10.
Cancer Res ; 80(12): 2676-2688, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32291316

RESUMEN

Targeting the MAPK pathway by combined inhibition of BRAF and MEK has increased overall survival in advanced BRAF-mutant melanoma in both therapeutic and adjuvant clinical settings. However, a significant proportion of tumors develop acquired resistance, leading to treatment failure. We have previously shown p63 to be an important inhibitor of p53-induced apoptosis in melanoma following genotoxic drug exposure. Here, we investigated the role of p63 in acquired resistance to MAPK inhibition and show that p63 isoforms are upregulated in melanoma cell lines chronically exposed to BRAF and MEK inhibition, with consequent increased resistance to apoptosis. This p63 upregulation was the result of its reduced degradation by the E3 ubiquitin ligase FBXW7. FBXW7 was itself regulated by MDM2, and in therapy-resistant melanoma cell lines, nuclear accumulation of MDM2 caused downregulation of FBXW7 and consequent upregulation of p63. Consistent with this, both FBXW7-inactivating mutations and MDM2 upregulation were found in melanoma clinical samples. Treatment of MAPK inhibitor-resistant melanoma cells with MDM2 inhibitor Nutlin-3A restored FBXW7 expression and p63 degradation in a dose-dependent manner and sensitized these cells to apoptosis. Collectively, these data provide a compelling rationale for future investigation of Nutlin-3A as an approach to abrogate acquired resistance of melanoma to MAPK inhibitor targeted therapy. SIGNIFICANCE: Upregulation of p63, an unreported mechanism of MAPK inhibitor resistance in melanoma, can be abrogated by treatment with the MDM2 inhibitor Nutlin-3A, which may serve as a strategy to overcome resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Factores de Transcripción/antagonistas & inhibidores , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Masculino , Melanoma/genética , Melanoma/patología , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Piperazinas/farmacología , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Piel/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Adulto Joven
11.
J Exp Clin Cancer Res ; 38(1): 472, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752944

RESUMEN

BACKGROUND: Alteration of signalling pathways regulating cell cycle progression is a common feature of cancer cells. Several drugs targeting distinct phases of the cell cycle have been developed but the inability of many of them to discriminate between normal and cancer cells has strongly limited their clinical potential because of their reduced efficacy at the concentrations used to limit adverse side effects. Mechanisms of resistance have also been described, further affecting their efficacy. Identification of novel targets that can potentiate the effect of these drugs or overcome drug resistance can provide a useful strategy to exploit the anti-cancer properties of these agents to their fullest. METHODS: The class II PI3K isoform PI3K-C2ß was downregulated in prostate cancer PC3 cells and cervical cancer HeLa cells using selective siRNAs and the effect on cell growth was determined in the absence or presence of the microtubule-stabilizing agent/anti-cancer drug docetaxel. Mitosis progression was monitored by time-lapse microscopy. Clonogenic assays were performed to determine the ability of PC3 and HeLa cells to form colonies upon PI3K-C2ß downregulation in the absence or presence of docetaxel. Cell multi-nucleation was assessed by immunofluorescence. Tumour growth in vivo was assessed using a xenograft model of PC3 cells upon PI3K-C2ß downregulation and in combination with docetaxel. RESULTS: Downregulation of PI3K-C2ß delays mitosis progression in PC3 and HeLa cells, resulting in reduced ability to form colonies in clonogenic assays in vitro. Compared to control cells, PC3 cells lacking PI3K-C2ß form smaller and more compact colonies in vitro and they form tumours more slowly in vivo in the first weeks after cells implant. Stable and transient PI3K-C2ß downregulation potentiates the effect of low concentrations of docetaxel on cancer cell growth. Combination of PI3K-C2ß downregulation and docetaxel almost completely prevents colonies formation in clonogenic assays in vitro and strongly inhibits tumour growth in vivo. CONCLUSIONS: These data reveal a novel role for the class II PI3K PI3K-C2ß during mitosis progression. Furthermore, data indicate that blockade of PI3K-C2ß might represent a novel strategy to potentiate the effect of docetaxel on cancer cell growth.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Docetaxel/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/enzimología , Animales , Antineoplásicos/farmacología , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Femenino , Células HeLa , Humanos , Masculino , Ratones Desnudos , Células PC-3 , Neoplasias de la Próstata/patología , Distribución Aleatoria , Transfección , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Exp Clin Cancer Res ; 38(1): 191, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088502

RESUMEN

BACKGROUND: The very aggressive nature and low survival rate of pancreatic ductal adenocarcinoma (PDAC) dictates the necessity to find novel efficacious therapies. Recent evidence suggests that phosphoinositide 3-kinase (PI3K) and 3-phosphoinositide-dependent protein kinase 1 (PDK1) are key effectors of oncogenic KRAS in PDAC. Herein, we report the role and mechanism of action of PDK1, a protein kinase of the AGC family, in PDAC. METHODS: PDAC cell lines were treated with selective PDK1 inhibitors or transfected with specific PDK1-targeting siRNAs. In vitro and in vivo assays were performed to investigate the functional role of PDK1 in PDAC. Specifically, anchorage-dependent and anchorage-independent growth was assessed in PDAC cells upon inhibition or downregulation of PDK1. Detailed investigation of the effect of PDK1 inhibition/downregulation on specific signalling pathways was also performed by Western blotting analysis. A xenograft tumour mouse model was used to determine the effect of pharmacological inhibition of PDK1 on PDAC cells growth in vivo. RESULTS: Treatment with specific inhibitors of PDK1 impaired anchorage-dependent and anchorage-independent growth of pancreatic cancer cell lines, as well as pancreatic tumour growth in a xenograft model. Mechanistically, inhibition or downregulation of PDK1 resulted in reduced activation of the serum/glucocorticoid regulated kinase family member 3 and subsequent reduced phosphorylation of its target N-Myc downstream regulated 1. Additionally, we found that combination of sub-optimal concentrations of inhibitors selective for PDK1 and the class IB PI3K isoform p110γ inhibits pancreatic cancer cell growth and colonies formation more potently than each single treatment. CONCLUSIONS: Our data indicate that PDK1 is a suitable target for therapeutic intervention in PDAC and support the clinical development of PDK1 inhibitors for PDAC.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/antagonistas & inhibidores , Antineoplásicos/farmacología , Neoplasias Pancreáticas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Biomarcadores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Interferente Pequeño/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1132-1141, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29883799

RESUMEN

The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119-/- mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119-/- mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55-/- mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensable.


Asunto(s)
Células Enteroendocrinas/efectos de los fármacos , Péptido 1 Similar al Glucagón/genética , Insulina/metabolismo , Lisofosfolípidos/farmacología , Ácidos Oléicos/farmacología , Receptores Acoplados a Proteínas G/genética , Animales , Línea Celular , Línea Celular Tumoral , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Cultivo Primario de Células , Receptores de Cannabinoides/deficiencia , Receptores de Cannabinoides/genética , Receptores Acoplados a Proteínas G/deficiencia , Transducción de Señal
14.
Cancers (Basel) ; 9(7)2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28696382

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) derives from keratinocytes in the epidermis and accounts for 15-20% of all cutaneous malignancies. Although it is usually curable by surgery, 5% of these tumours metastasise leading to poor prognosis mostly because of a lack of therapies and validated biomarkers. As the incidence rate is rising worldwide it has become increasingly important to better understand the mechanisms involved in cSCC development and progression in order to develop therapeutic strategies. Here we discuss some of the evidence indicating that activation of phosphoinositide 3-kinases (PI3Ks)-dependent signalling pathways (in particular the PI3Ks targets Akt and mTOR) has a key role in cSCC. We further discuss available data suggesting that inhibition of these pathways can be beneficial to counteract the disease. With the growing number of different inhibitors currently available, it would be important to further investigate the specific contribution of distinct components of the PI3Ks/Akt/mTOR pathways in order to identify the most promising molecular targets and the best strategy to inhibit cSCC.

16.
Sci Rep ; 6: 26142, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27199173

RESUMEN

Strong evidence suggests that phospholipase Cγ1 (PLCγ1) is a suitable target to counteract tumourigenesis and metastasis dissemination. We recently identified a novel signalling pathway required for PLCγ1 activation which involves formation of a protein complex with 3-phosphoinositide-dependent protein kinase 1 (PDK1). In an effort to define novel strategies to inhibit PLCγ1-dependent signals we tested here whether a newly identified and highly specific PDK1 inhibitor, 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5), could affect PDK1/PLCγ1 interaction and impair PLCγ1-dependent cellular functions in cancer cells. Here, we demonstrate that 2-O-Bn-InsP5 interacts specifically with the pleckstrin homology domain of PDK1 and impairs formation of a PDK1/PLCγ1 complex. 2-O-Bn-InsP5 is able to inhibit the epidermal growth factor-induced PLCγ1 phosphorylation and activity, ultimately resulting in impaired cancer cell migration and invasion. Importantly, we report that 2-O-Bn-InsP5 inhibits cancer cell dissemination in zebrafish xenotransplants. This work demonstrates that the PDK1/PLCγ1 complex is a potential therapeutic target to prevent metastasis and it identifies 2-O-Bn-InsP5 as a leading compound for development of anti-metastatic drugs.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Fosfatos de Inositol/farmacología , Fosfolipasa C gamma/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Melanoma/tratamiento farmacológico , Trasplante de Neoplasias , Unión Proteica , Multimerización de Proteína , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Pez Cebra
17.
Sci Rep ; 6: 23277, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26983806

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions such as proliferation, growth, survival and migration. The eight PI3K isoforms are grouped into three classes and the three enzymes belonging to the class II subfamily (PI3K-C2α, ß and γ) are the least investigated amongst all PI3Ks. Interest on these isoforms has been recently fuelled by the identification of specific physiological roles for class II PI3Ks and by accumulating evidence indicating their involvement in human diseases. While it is now established that these isoforms can regulate distinct cellular functions compared to other PI3Ks, there is still a limited understanding of the signalling pathways that can be specifically regulated by class II PI3Ks. Here we show that PI3K-C2ß regulates mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2) activation in prostate cancer (PCa) cells. We further demonstrate that MEK/ERK and PI3K-C2ß are required for PCa cell invasion but not proliferation. In addition we show that PI3K-C2ß but not MEK/ERK regulates PCa cell migration as well as expression of the transcription factor Slug. These data identify novel signalling pathways specifically regulated by PI3K-C2ß and they further identify this enzyme as a key regulator of PCa cell migration and invasion.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Butadienos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo , Factor de Crecimiento Epidérmico/farmacología , Humanos , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nitrilos/farmacología , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción de la Familia Snail/metabolismo
18.
Oncotarget ; 7(14): 18325-45, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26934321

RESUMEN

It is now well established that the enzymes phosphoinositide 3-kinases (PI3Ks) have a key role in the development and progression of many cancer types and indeed PI3Ks inhibitors are currently being tested in clinical trials. Although eight distinct PI3K isoforms exist, grouped into three classes, most of the evidence currently available are focused on one specific isoform with very little known about the potential role of the other members of this family in cancer. Here we demonstrate that the class II enzyme PI3K-C2ß is overexpressed in several human breast cancer cell lines and in human breast cancer specimens. Our data indicate that PI3K-C2ß regulates breast cancer cell growth in vitro and in vivo and that PI3K-C2ß expression in breast tissues is correlated with the proliferative status of the tumor. Specifically we show that downregulation of PI3K-C2ß in breast cancer cell lines reduces colony formation, induces cell cycle arrest and inhibits tumor growth, in particular in an estrogen-dependent in vivo xenograft. Investigation of the mechanism of the PI3K-C2ß-dependent regulation of cell cycle progression and cell growth revealed that PI3K-C2ß regulates cyclin B1 protein levels through modulation of microRNA miR-449a levels. Our data further demonstrate that downregulation of PI3K-C2ß inhibits breast cancer cell invasion in vitro and breast cancer metastasis in vivo. Consistent with this, PI3K-C2ß is highly expressed in lymph-nodes metastases compared to matching primary tumors. These data demonstrate that PI3K-C2ß plays a pivotal role in breast cancer progression and in metastasis development. Our data indicate that PI3K-C2ß may represent a key molecular switch that regulates a rate-limiting step in breast tumor progression and therefore it may be targeted to limit breast cancer spread.


Asunto(s)
Neoplasias de la Mama/enzimología , Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Fosfatidilinositol 3-Quinasas Clase II/genética , Progresión de la Enfermedad , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Transducción de Señal
19.
Front Physiol ; 5: 391, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25360116

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions that are critical for cancer progression and development, including cell survival, proliferation and migration. Three classes of PI3Ks exist with the class I PI3K encompassing four isoforms of the catalytic subunit known as p110α, p110ß, p110γ, and p110δ. Although for many years attention has been mainly focused on p110α recent evidence supports the conclusion that p110ß, p110γ, and p110δ can also have a role in cancer. Amongst these, accumulating evidence now indicates that p110γ is involved in several cellular processes associated with cancer and indeed this specific isoform has emerged as a novel important player in cancer progression. Studies from our laboratory have identified a specific overexpression of p110γ in human pancreatic ductal adenocarcinoma (PDAC) and in hepatocellular carcinoma (HCC) tissues compared to their normal counterparts. Our data have further established that selective inhibition of p110γ is able to block PDAC and HCC cell proliferation, strongly suggesting that pharmacological inhibition of this enzyme can directly affect growth of these tumors. Furthermore, increasing evidence suggests that p110γ plays also a key role in the interactions between cancer cells and tumor microenvironment and in particular in tumor-associated immune response. It has also been reported that p110γ can regulate invasion of myeloid cells into tumors and tumor angiogenesis. Finally p110γ has also been directly involved in regulation of cancer cell migration. Taken together these data indicate that p110γ plays multiple roles in regulation of several processes that are critical for tumor progression and metastasis. This review will discuss the role of p110γ in gastrointestinal tumor development and progression and how targeting this enzyme might represent a way to target very aggressive tumors such as pancreatic and liver cancer on multiple fronts.

20.
Biochem Soc Trans ; 42(5): 1378-82, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25233418

RESUMEN

In the last few years, an increased attention to class II isoforms of phosphoinositide 3-kinase (PI3K) has emerged, mainly fuelled by evidence suggesting a distinct non-redundant role for these enzymes compared with other PI3Ks. Despite this renewed interest, many questions remain on the specific functions regulated by these isoforms and their mechanism of activation and action. In the present review, we discuss results from recent studies that have provided some answers to these questions.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Neovascularización Patológica/enzimología , Fosfatos de Fosfatidilinositol/metabolismo , Sistemas de Mensajero Secundario , Animales , Fosfatidilinositol 3-Quinasas Clase II/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones Noqueados , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...