Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901773

RESUMEN

Mitochondria play a key role in regulating host metabolism, immunity and cellular homeostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association between an alphaproteobacterium and a primitive eukaryotic host cell or an archaeon. This crucial event determined that human cell mitochondria share some features with bacteria, namely cardiolipin, N-formyl peptides, mtDNA and transcription factor A, that can act as mitochondrial-derived damage-associated molecular patterns (DAMPs). The impact of extracellular bacteria on the host act largely through the modulation of mitochondrial activities, and often mitochondria are themselves immunogenic organelles that can trigger protective mechanisms through DAMPs mobilization. In this work, we demonstrate that mesencephalic neurons exposed to an environmental alphaproteobacterium activate innate immunity through toll-like receptor 4 and Nod-like receptor 3. Moreover, we show that mesencephalic neurons increase the expression and aggregation of alpha-synuclein that interacts with mitochondria, leading to their dysfunction. Mitochondrial dynamic alterations also affect mitophagy which favors a positive feedback loop on innate immunity signaling. Our results help to elucidate how bacteria and neuronal mitochondria interact and trigger neuronal damage and neuroinflammation and allow us to discuss the role of bacterial-derived pathogen-associated molecular patterns (PAMPs) in Parkinson's disease etiology.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Mitocondrias/metabolismo , Inmunidad Innata , Alarminas/metabolismo , Bacterias , Neuronas/metabolismo
2.
Gut ; 72(1): 73-89, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34836918

RESUMEN

OBJECTIVE: Idiopathic Parkinson's disease (PD) is characterised by alpha-synuclein (aSyn) aggregation and death of dopaminergic neurons in the midbrain. Recent evidence posits that PD may initiate in the gut by microbes or their toxins that promote chronic gut inflammation that will ultimately impact the brain. In this work, we sought to demonstrate that the effects of the microbial toxin ß-N-methylamino-L-alanine (BMAA) in the gut may trigger some PD cases, which is especially worrying as this toxin is present in certain foods but not routinely monitored by public health authorities. DESIGN: To test the hypothesis, we treated wild-type mice, primary neuronal cultures, cell lines and isolated mitochondria with BMAA, and analysed its impact on gut microbiota composition, barrier permeability, inflammation and aSyn aggregation as well as in brain inflammation, dopaminergic neuronal loss and motor behaviour. To further examine the key role of mitochondria, we also determined the specific effects of BMAA on mitochondrial function and on inflammasome activation. RESULTS: BMAA induced extensive depletion of segmented filamentous bacteria (SFB) that regulate gut immunity, thus triggering gut dysbiosis, immune cell migration, increased intestinal inflammation, loss of barrier integrity and caudo-rostral progression of aSyn. Additionally, BMAA induced in vitro and in vivo mitochondrial dysfunction with cardiolipin exposure and consequent activation of neuronal innate immunity. These events primed neuroinflammation, dopaminergic neuronal loss and motor deficits. CONCLUSION: Taken together, our results demonstrate that chronic exposure to dietary BMAA can trigger a chain of events that recapitulate the evolution of the PD pathology from the gut to the brain, which is consistent with 'gut-first' PD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Mesencéfalo/metabolismo , Mesencéfalo/patología , Enfermedad de Parkinson/metabolismo , Inflamación/metabolismo , Mitocondrias/metabolismo
3.
Curr Opin Neurobiol ; 78: 102664, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535149

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein (aSyn) in the nigrostriatal pathway that is followed by severe neuroinflammatory response. PD etiology is still puzzling; however, the mitocentric view might explain the vast majority of molecular findings not only in the brain, but also at systemic level. While neuronal degeneration is tightly associated with mitochondrial dysfunction, the causal role between aSyn accumulation and mitochondrial dysfunction still requires further investigation. Moreover, mitochondrial dysfunction can elicit an inflammatory response that may be transmitted locally but also in a long range through systemic circulation. Furthermore, mitochondrial-driven innate immune activation may involve the synthesis of antimicrobial peptides, of which aSyn poses as a good candidate. While there is still a need to clarify disease-elicited mechanisms and how aSyn has the ability to modulate mitochondrial and cellular dysfunction, recent studies provide insightful views on mitochondria-inflammation axis in PD etiology.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Mitocondrias/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Inmunidad Innata
4.
Molecules ; 26(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809771

RESUMEN

Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders, characterized by multiple pathological features. Therefore, multi-target drug discovery has been one of the most active fields searching for new effective anti-AD therapies. Herein, a series of hybrid compounds are reported which were designed and developed by combining an aryl-sulfonamide function with a benzyl-piperidine moiety, the pharmacophore of donepezil (a current anti-AD acetylcholinesterase AChE inhibitor drug) or its benzyl-piperazine analogue. The in vitro results indicate that some of these hybrids achieve optimized activity towards two main AD targets, by displaying excellent AChE inhibitory potencies, as well as the capability to prevent amyloid-ß (Aß) aggregation. Some of these hybrids also prevented Aß-induced cell toxicity. Significantly, drug-like properties were predicted, including for blood-brain permeability. Compound 9 emerged as a promising multi-target lead compound (AChE inhibition (IC50 1.6 µM); Aß aggregation inhibition 60.7%). Overall, this family of hybrids is worthy of further exploration, due to the wide biological activity of sulfonamides.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Donepezilo/farmacología , Sulfonamidas/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Línea Celular Tumoral , Inhibidores de la Colinesterasa/farmacología , Humanos , Ligandos , Piperazinas/farmacología , Piperidinas/farmacología , Relación Estructura-Actividad
5.
Biomolecules ; 11(1)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467709

RESUMEN

Alzheimer's disease (AD) is generally recognized as a multifactorial neurodegenerative pathology with an increasing impact on society. Tenuazonic acid (TA) is a natural compound that was recently identified as a potential multitarget ligand with anti-cholinesterase, anti-amyloidogenic and antioxidant activities. Using its structure as a chemical scaffold, we synthesized and evaluated new derivatives (1-5), including tenuazonic-donepezil (TA-DNP) hybrids (4 and 5) due to the clinical importance of the anti-AD drug donepezil. These novel compounds all achieved activity in the micromolar range towards all selected targets and demonstrated to be potentially orally absorbed. Moreover, a selected compound (1) was further investigated as a chelating agent towards copper (II), zinc (II) and iron (III) and showed good chelating ability (pFe = 16.6, pCu = 11.6, pZn = 6.0 at pH 7.4). Therefore, the TA motif can be considered an interesting building block in the search for innovative multi-functional anti-neurodegenerative drugs, as exemplified by hybrid 5, a promising non-cytotoxic lead compound adequate for the early stages of AD, and capable of ameliorating the oxidative status of SH-SY5Y human neuroblastoma cells.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Ácido Tenuazónico/uso terapéutico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Donepezilo/química , Donepezilo/farmacología , Donepezilo/uso terapéutico , Depuradores de Radicales Libres/farmacología , Humanos , Concentración de Iones de Hidrógeno , Metales/química , Simulación del Acoplamiento Molecular , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Agregado de Proteínas/efectos de los fármacos , Espectrofotometría , Ácido Tenuazónico/química , Ácido Tenuazónico/farmacocinética
6.
J Neuroinflammation ; 17(1): 332, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33153477

RESUMEN

BACKGROUND: After decades of research recognizing it as a complex multifactorial disorder, sporadic Alzheimer's disease (sAD) still has no known etiology. Adding to the myriad of different pathways involved, bacterial neurotoxins are assuming greater importance in the etiology and/or progression of sAD. ß-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by some microorganisms namely cyanobacteria, was previously detected in the brains of AD patients. Indeed, the consumption of BMAA-enriched foods has been proposed to induce amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), which implicated this microbial metabolite in neurodegeneration mechanisms. METHODS: Freshly isolated mitochondria from C57BL/6 mice were treated with BMAA and O2 consumption rates were determined. O2 consumption and glycolysis rates were also measured in mouse primary cortical neuronal cultures. Further, mitochondrial membrane potential and ROS production were evaluated by fluorimetry and the integrity of mitochondrial network was examined by immunofluorescence. Finally, the ability of BMAA to activate neuronal innate immunity was quantified by addressing TLRs (Toll-like receptors) expression, p65 NF-κB translocation into the nucleus, increased expression of NLRP3 (Nod-like receptor 3), and pro-IL-1ß. Caspase-1 activity was evaluated using a colorimetric substrate and mature IL-1ß levels were also determined by ELISA. RESULTS: Treatment with BMAA reduced O2 consumption rates in both isolated mitochondria and in primary cortical cultures, with additional reduced glycolytic rates, decrease mitochondrial potential and increased ROS production. The mitochondrial network was found to be fragmented, which resulted in cardiolipin exposure that stimulated inflammasome NLRP3, reinforced by decreased mitochondrial turnover, as indicated by increased p62 levels. BMAA treatment also activated neuronal extracellular TLR4 and intracellular TLR3, inducing p65 NF-κB translocation into the nucleus and activating the transcription of NLRP3 and pro-IL-1ß. Increased caspase-1 activity resulted in elevated levels of mature IL-1ß. These alterations in mitochondrial metabolism and inflammation increased Tau phosphorylation and Aß peptides production, two hallmarks of AD. CONCLUSIONS: Here we propose a unifying mechanism for AD neurodegeneration in which a microbial toxin can induce mitochondrial dysfunction and activate neuronal innate immunity, which ultimately results in Tau and Aß pathology. Our data show that neurons, alone, can mount inflammatory responses, a role previously attributed exclusively to glial cells.


Asunto(s)
Enfermedad de Alzheimer/patología , Aminoácidos Diaminos/farmacología , Corteza Cerebral/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Enfermedad de Alzheimer/inmunología , Animales , Corteza Cerebral/inmunología , Corteza Cerebral/patología , Toxinas de Cianobacterias , Ratones , Mitocondrias/inmunología , Mitocondrias/patología , Neuronas/inmunología , Neuronas/patología
7.
Mol Neurobiol ; 56(8): 5654-5670, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30661206

RESUMEN

Macroautophagy impairment plays a key role in sporadic Alzheimer's disease (sAD) neurodegenerative process. Nevertheless, the mechanism(s) that lead to a deficiency in macroautophagy in AD remains elusive. In this work, we identify, for the first time that Beclin-1 acetylation status is implicated in the alterations in autophagy observed in AD neurodegeneration. We observed that Beclin-1 is deacetylated by sirtuin 1 (SIRT1) and acetylated by p300. In addition, Beclin-1 acetylation inhibits autophagosome maturation, leading to impairment in autophagic flux. We also analyzed some proteins known to be involved in the maturation of autophagosomes such as Rab7, which participates in the fusion step with lysosomes. We observed that increased expression of Rab7 might represent a response to boost the formation of large perinuclear lysosome clusters in accordance with an increase in lysosomal biogenesis determined by increase in LAMP-2A, LAMP-1, and cathepsin D expression in AD cells. Thus, our data provides strong evidences that Beclin-1 acetylation impairs the autophagic flux, and despite lysosomal biogenesis seems to be triggered as a compensatory response, autophagosome fusion with lysosomes is compromised contributing to AD neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Autofagia , Beclina-1/metabolismo , Acetilación , Anciano , Enfermedad de Alzheimer/fisiopatología , Supervivencia Celular/efectos de los fármacos , Proteína p300 Asociada a E1A/metabolismo , Endosomas/metabolismo , Humanos , Células Híbridas/metabolismo , Lisosomas/metabolismo , Fusión de Membrana , Niacinamida/farmacología , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...