Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosurg Spine ; 39(1): 113-121, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37021767

RESUMEN

OBJECTIVE: Infuse bone graft is a widely used osteoinductive adjuvant; however, the simple collagen sponge scaffold used in the implant has minimal inherent osteoinductive properties and poorly controls the delivery of the adsorbed recombinant human bone morphogenetic protein-2 (rhBMP-2). In this study, the authors sought to create a novel bone graft substitute material that overcomes the limitations of Infuse and compare the ability of this material with that of Infuse to facilitate union following spine surgery in a clinically translatable rat model of spinal fusion. METHODS: The authors created a polydopamine (PDA)-infused, porous, homogeneously dispersed solid mixture of extracellular matrix and calcium phosphates (BioMim-PDA) and then compared the efficacy of this material directly with Infuse in the setting of different concentrations of rhBMP-2 using a rat model of spinal fusion. Sixty male Sprague Dawley rats were randomly assigned to each of six equal groups: 1) collagen + 0.2 µg rhBMP-2/side, 2) BioMim-PDA + 0.2 µg rhBMP-2/side, 3) collagen + 2.0 µg rhBMP-2/side, 4) BioMim-PDA + 2.0 µg rhBMP-2/side, 5) collagen + 20 µg rhBMP-2/side, and 6) BioMim-PDA + 20 µg rhBMP-2/side. All animals underwent posterolateral intertransverse process fusion at L4-5 using the assigned bone graft. Animals were euthanized 8 weeks postoperatively, and their lumbar spines were analyzed via microcomputed tomography (µCT) and histology. Spinal fusion was defined as continuous bridging bone bilaterally across the fusion site evaluated via µCT. RESULTS: The fusion rate was 100% in all groups except group 1 (70%) and group 4 (90%). Use of BioMim-PDA with 0.2 µg rhBMP-2 led to significantly greater results for bone volume (BV), percentage BV, and trabecular number, as well as significantly smaller trabecular separation, compared with the use of the collagen sponge with 2.0 µg rhBMP-2. The same results were observed when the use of BioMim-PDA with 2.0 µg rhBMP-2 was compared with the use of the collagen sponge with 20 µg rhBMP-2. CONCLUSIONS: Implantation of rhBMP-2-adsorbed BioMim-PDA scaffolds resulted in BV and bone quality superior to that afforded by treatment with rhBMP-2 concentrations 10-fold higher implanted on a conventional collagen sponge. Using BioMim-PDA (vs a collagen sponge) for rhBMP-2 delivery could significantly lower the amount of rhBMP-2 required for successful bone grafting clinically, improving device safety and decreasing costs.


Asunto(s)
Fusión Vertebral , Masculino , Ratas , Humanos , Animales , Fusión Vertebral/métodos , Trasplante Óseo/métodos , Microtomografía por Rayos X , Biomimética , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/uso terapéutico , Proteína Morfogenética Ósea 2/farmacología , Colágeno/farmacología , Proteínas Recombinantes/farmacología , Vértebras Lumbares/cirugía
2.
Sci Transl Med ; 12(539)2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295900

RESUMEN

Medical devices and implants made of synthetic materials can induce an immune-mediated process when implanted in the body called the foreign body response, which results in formation of a fibrous capsule around the implant. To explore the immune and stromal connections underpinning the foreign body response, we analyzed fibrotic capsules surrounding surgically excised human breast implants from 12 individuals. We found increased numbers of interleukin 17 (IL17)-producing γδ+ T cells and CD4+ T helper 17 (TH17) cells as well as senescent stromal cells in the fibrotic capsules. Further analysis in a murine model demonstrated an early innate IL17 response to implanted synthetic material (polycaprolactone) particles that was mediated by innate lymphoid cells and γδ+ T cells. This was followed by a chronic adaptive CD4+ TH17 cell response that was antigen dependent. Synthetic materials with varying chemical and physical properties implanted either in injured muscle or subcutaneously induced similar IL17 responses in mice. Mice deficient in IL17 signaling established that IL17 was required for the fibrotic response to implanted synthetic materials and the development of p16INK4a senescent cells. IL6 produced by senescent cells was sufficient for the induction of IL17 expression in T cells. Treatment with a senolytic agent (navitoclax) that killed senescent cells reduced IL17 expression and fibrosis in the mouse implant model. Discovery of a feed-forward loop between the TH17 immune response and the senescence response to implanted synthetic materials introduces new targets for therapeutic intervention in the foreign body response.


Asunto(s)
Senescencia Celular , Cuerpos Extraños , Reacción a Cuerpo Extraño , Interleucina-17 , Animales , Femenino , Cuerpos Extraños/inmunología , Humanos , Inmunidad Innata , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos C57BL , Prótesis e Implantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA