Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Protein Pept Lett ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963110

RESUMEN

INTRODUCTION: Insulin-like growth factor-1 (IGF-1) is a single-chain polypeptide with various physiological functions. Escherichia coli is one of the most desirable hosts for recombinant protein production, especially for human proteins whose post-translation modifications are not essential for their bioactivity, such as hIGF-1. OBJECTIVES: In this study, bacterial thioredoxin (Trx) was studied as a fused and non-fused protein to convert the insoluble form of recombinant human IGF-1 (rhIGF-1) to its soluble form in E. coli. METHODS: The rhIGF-1 was expressed in the E. coli Origami strain in the form of fused-Trx. It was co-expressed with Trx and then purified and quantified. In the next step, the biological activity of rhIGF-1 was evaluated by alkaline phosphatase (ALP) activity assay in human adipose-derived stem cells (hASCs) regarding the differentiation enhancement effect of IGF-1 through the osteogenic process. RESULTS: Results showed that Trx in both the fused and non-fused forms had a positive effect on the production of the soluble form of rhIGF-1. A significant increase in ALP activity in hASCs after rhIGF-1 treatment was observed, confirming protein bioactivity. CONCLUSION: It was strongly suggested that the overproduction of Trx could increase the solubility of co-expressed recombinant proteins by changing the redox state in E. coli cells.

3.
AMB Express ; 14(1): 69, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850460

RESUMEN

Aromatic compounds are known anti-amyloid aggregates. Their effect on amorphous aggregates of proteins is, however, less studied. We chose aromatic amino acids Trp, Tyr, and Phe, as well as another known stabilizer (i.e. Arg), as potential compatible solvents to be tested on Bacillus amyloliquefaciens alpha-amylase (BAA). Among these additives, Phe was the only one to be effective on the thermal inactivation and amorphous aggregation of BAA, while preserving its intrinsic activity. A concentration of 50 mM Phe was used to test its potential in counteracting the deleterious effect of BAA amorphous aggregates in vivo. After 21 days of daily subcutaneous injections of the native enzyme to mice, amorphous aggregates of BAA, as well as aggregates produced in presence of 50 mM Phe, the tissues located at the site of injection were studied histologically. Amorphous aggregates caused an increase in macrophages and lipid droplets. Serum levels of IL6 and TNF-α were also accordingly elevated and indicative of an inflammation state. Aggregates also resulted into increased levels of glucose, triglycerides and cholesterol, as well as liver enzymes SGOT and SGPT. On the other hand, the presence of Phe prevented this exacerbated inflammatory state and the subsequent impairment of biochemical parameters. In conclusion, Phe is an interesting compound for both stabilizing proteins and counteracting the pathological effect of amorphous aggregates.

4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 899-911, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37530786

RESUMEN

The study investigated the use of 5-fluorouracil-loaded ZnO nanocomposites (5-FU/Gd-ZnO NCs) as a potential treatment for cancer. 5-FU is a commonly used drug for cancer treatment but has undesirable side effects. The materials were characterized using various techniques, including PXRD, FTIR, FESEM, TEM, DLS, £-potential, and AFM. The data showed that the nanocomposites had a plate-like agglomeration with particle diameters ranging from 317.6 to 120.1 nm. The IC50 value of 5-FU-ZnO, which inhibits cell growth, was found to be 1.85 ppm. The effects of 5-FU-ZnO on inflammatory markers were also examined. While 5-FU increased the levels of TNF-a and IL-1b, the nanocomposites were able to reduce these levels. Additionally, the 5-FU/Gd-ZnO-NCs group showed an increase in thiol levels and a decrease in catalase and superoxide dismutase levels. Flow cytometry results showed that 5-FU, ZnO-NCs, and 5-FU/Gd-ZnO-NCs did not have any additive or synergistic effects on the suppression or eradication of cancer cells. In vivo, experiments showed that the 5-FU/Gd-ZnO NCs had similar necrotic characteristics and reduced fibrosis and collagen deposition compared to the free medication. The nanocomposites also exhibited higher antioxidative activity and lower inflammatory responses compared to the 5-FU group. It was shown that 5-FU/Gd-ZnO-NCs successfully inhibit cell proliferation. The in vivo results were comparable to those obtained with free 5-FU, suggesting the potential of these nanocomposites as therapeutic agents.


Asunto(s)
Neoplasias Colorrectales , Nanocompuestos , Óxido de Zinc , Humanos , Fluorouracilo/farmacología , Antioxidantes , Neoplasias Colorrectales/tratamiento farmacológico
5.
Mol Biotechnol ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917324

RESUMEN

Environmental pollution is growing every day in terms of the increase in population, industrialization, and urbanization. Shewanella azerbaijanica is introduced as a highly potent bacterium in metal bioremediation. The mtrC gene was selected as a cloning target to improve electron flux chains in the EET (extracellular electron transfer) pathway. Using the SDM (site-directed mutagenesis) technique, the unique gene assembly featured the mtrC gene sandwiched between two napD/B genes to disrupt the nitrate reduction pathway, which serves as the primary metal reduction competitor. Shew-mtrC gene construction was transferred to expression plasmid pET28a (+) in the expression host bacteria (E. coli BL21 and S. azerbaijanica), in pUC57, cloning plasmid, which was transferred to the cloning host bacteria E. coli Top10 and S. azerbaijanica. All cloning procedures (i.e., synthesis, insertion, transformation, cloning, and protein expression) were verified and confirmed by precise tests. ATR-FTIR analysis, CD, western blotting, affinity chromatography, SDS-PAGE, and other techniques were used to confirm the expression and structure of the MtrC protein. The genome sequence and primers were designed according to the submitted Shewanella oneidensis MR-1 genome, the most similar bacteria to this native species. The performance of recombinant S. azerbaijanica bacterium in metal bioremediation, as sustainable strategy, has to be verified by more research.

6.
Curr Pharm Des ; 29(39): 3103-3122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37990429

RESUMEN

Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Oro/química , Especies Reactivas de Oxígeno , Nanopartículas del Metal/química , Neoplasias/tratamiento farmacológico , Anticuerpos/uso terapéutico , Línea Celular Tumoral
7.
Protein J ; 42(2): 112-124, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36905495

RESUMEN

BACKGROUND: The health benefits of natural products have a long history. Chaga (Inonotus obliques) is used in traditional medicine and is an essential antioxidant for protecting the body from oxidants. Reactive oxygen species (ROS) are produced routinely due to metabolic processes. However, environmental pollution factors such as methyl tert-butyl ether (MTBE) can increase oxidative stress in the human body. MTBE is widely used as a fuel oxygenator that can harm health. The widespread use of MTBE has posed significant threats to the environment by polluting environmental resources, including groundwater. This compound can accumulate in the bloodstream by inhaling polluted air, with a strong affinity for blood proteins. The primary mechanism of MTBE's harmful effects is ROS production. The use of antioxidants may help reduce MTBE oxidation conditions. The present study proposes that biochaga, as an antioxidant, can reduce MTBE damage in the bovine serum albumin (BSA) structure. METHODS AND RESULTS: This study investigated the role of different concentrations of biochaga in the structural change of BSA in the presence of MTBE by biophysical methods such as UV-Vis, fluorescence, FTIR spectroscopy, DPPH radical inhibition method, aggregation test, and molecular docking. Research at the molecular level is critical to investigate the structural change of proteins by MTBE and the protective effect of the ideal dose (2.5 µg/ml) of biochaga. CONCLUSION: the results of spectroscopic examinations showed that the concentration of 2.5 µg/ml of biochaga has the least destructive effect on the structure of BSA in the presence and absence of MTBE, and it can play as an antioxidant.


Asunto(s)
Éteres Metílicos , Albúmina Sérica Bovina , Humanos , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología , Éteres Metílicos/farmacología , Éteres Metílicos/química , Éteres Metílicos/metabolismo
8.
J Biochem Mol Toxicol ; 37(5): e23325, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36843533

RESUMEN

We evaluated the activity of core-shell ZnO nanoparticles (ZnO-NPs@polymer shell) containing Oxaliplatin via polymerization through in vitro studies and in vivo mouse models of colorectal cancer. ZnO NPs were synthesized in situ when the polymerization step was completed by co-precipitation. Gadolinium coordinated-ZnONPs@polymer shell (ZnO-Gd NPs@polymer shell) was synthesized by exploiting Gd's oxophilicity (III). The biophysical properties of the NPs were studied using powder X-ray diffraction (PXRD), Fourier transforms infrared spectroscopy, Ultraviolet-visible spectroscopy (UV-Vis), field emission electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy, dynamic light scattering, and z-potential. (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) was used to determine the antiproliferative activity of ZnO-Gd-OXA. Moreover, a xenograft mouse model of colon cancer was exerted to survey its antitumor activity and effect on tumor growth. In the following, the model was also evaluated by histological staining (H-E; Hematoxylin & Eosin and trichrome staining) and gene expression analyses through the application of RT-PCR/ELISA, which included biochemical evaluation (MDA, thiols, SOD, CAT). The formation of ZnO NPs, which contained a crystallite size of 16.8 nm, was confirmed by the outcomes of the PXRD analysis. The Plate-like morphology and presence of Pt were obtained in EDX outcomes. TEM analysis displayed the attained ZnO NPs in a spherical shape and a diameter of 33 ± 8.5 nm, while the hydrodynamic sizes indicated that the particles were highly aggregated. The biological results demonstrated that ZnO-Gd-OXA inhibited tumor growth by inducing reactive oxygen species and inhibiting fibrosis, warranting further research on this novel colorectal cancer treatment agent.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Óxido de Zinc , Humanos , Ratones , Animales , Oxaliplatino/farmacología , Óxido de Zinc/farmacología , Óxido de Zinc/química , Nanopartículas/química , Extractos Vegetales/química
9.
Curr Cancer Drug Targets ; 23(7): 524-533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36809944

RESUMEN

Nowadays, nano-platforms designed for drug delivery systems (DDSs) such as polymers, liposomes, and micelles have been demonstrated to be clinically efficient. The sustained drug release is one of the advantages of DDSs, especially polymer-based nanoparticles. The formulation could enhance the drug's durability, in which the biodegradable polymers are the most interesting building blocks of DDSs. Nano-carriers could circumvent many issues by localized drug delivery and release via certain internalization routes such as intracellular endocytosis paths and increasing biocompatibility. Polymeric nanoparticles and their nanocomposite are one of the most important classes of materials that can be used for the assembly of nanocarriers that can form complex, conjugated and encapsulated forms. The site-specific drug delivery may arise from the ability of nanocarriers to pass through the biological barrier, their specific interactions with receptors, and passive targeting. The better circulation, uptake, and stability along with targeting attributes lead to lesser side effects and damage to normal cells. Hence, in this review, the most recent achievements on polycaprolactone-based or -modified nanoparticles in drug delivery systems (DDSs) for 5-fluorouracil (5-FU) are presented.


Asunto(s)
Fluorouracilo , Nanopartículas , Humanos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Polímeros
10.
Toxicol Res ; 38(4): 557-566, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36277367

RESUMEN

Vinyl chloride is a colorless gas with a pleasant odor capable of entering the body through oral or inhalation routes. Extensive studies on this compound indicated that it is a carcinogen, and Vinyl chloride exposure can result in a specific type of cancer in vinyl chloride workers. Whereas hemoglobin plays a vital role in oxygen transfer throughout the body, in a molecular aspect, the effect of vinyl chloride on human hemoglobin has not been studied. Furthermore, selenium as an antioxidant is a vital factor for the health of humans and animals. Then this research investigated the effect of the antioxidant capability of selenium at the same concentrations in blood on the interaction between vinyl chloride and hemoglobin. UV-visible, Fourier-transform infrared, chemiluminescence, and fluorescence spectroscopies were employed. The results indicated the destruction of hemoglobin structure in different concentrations of vinyl chloride. At the same time, the antioxidant effect of selenium inhibited the destructive impact of vinyl chloride on hemoglobin structure.

11.
Cell J ; 24(8): 458-464, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36093805

RESUMEN

Objective: Primordial germ cell (PGCs) lines are a source of a highly specialized type of cells, characteristically oocytes,
during female germline development in vivo. The oocyte growth begins in the transition from the primary follicle. It is
associated with dynamic changes in gene expression, but the gene-regulating signals and transcription factors that control oocyte growth remain unknown. We aim to investigate the differentiation potential of mouse bone marrow mesenchymal stem cells (mMSCs) into female germ-like cells by testing several signals and transcription factors.
Materials and Methods: In this experimental study, mMSCs were extracted from mice femur bone using the flushing
technique. The cluster-differentiation (CD) of superficial mesenchymal markers was determined with flow cytometric analysis. We applied a set of transcription factors including retinoic acid (RA), titanium nanotubes (TNTs), and fibrin such as TNT-coated fibrin (F+TNT) formation and (RA+F+TNT) induction, and investigated the changes in gene, MVH/ DDX4, expression and functional screening using an in vitro mouse oocyte development condition. Germ cell markers expression, (MVH / DDX4), was analyzed with Immunocytochemistry staining, quantitative transcription-polymerase chain reaction (RT-qPCR) analysis, and Western blots.
Results: The expression of CD was confirmed by flow cytometry. The phase determination of the TNTs and F+TNT were confirmed using x-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. Remarkably, applying these transcription factors quickly induced pluripotent stem cells into oocyte-like cells that were sufficient to generate female germlike cells, growth, and maturation from mMSCs differentiation. These transcription factors formed oocyte-like cells specification of stem cells, epigenetic reprogramming, or meiosis and indicate that oocyte meiosis initiation and oocyte growth are not separable from the previous epigenetic reprogramming in stem cells in vitro.
Conclusion: Results suggested several transcription factors may apply for arranging oocyte-like cell growth and supplies an alternative source of in vitro maturation (IVM).

12.
Curr Cancer Drug Targets ; 22(5): 361-372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35048809

RESUMEN

The application of Oxaliplatin (OxPt) in different malignancies is reported to be accompanied by several side effects, including neuropathy, nausea, vomiting, diarrhea, mouth sores, low blood counts, loss of appetite, etc. The passive or active targeting of different tumors can improve OxPt delivery. Considering the demand for novel systems meant to improve the OxPt efficacy and define the shortcomings, we provided an overview of different approaches regarding the delivery of OxPt. There is an extending body of data that exhibits the value of liposomes and polymer- based drug delivery systems as the most successful systems among the OxPt drug delivery procedures. Several clinical trials have been carried out to investigate the side effects and dose-limiting toxicity of liposomal oxaliplatin, such as the assessment on Safety Study of MBP-426 (Liposomal Oxaliplatin Suspension for Injection) to Treat Advanced or Metastatic Solid Tumors. In addition, several studies indicated the biocompatibility and biodegradability of this product, as well as its option for being fictionalized to derive specialized smart nanosystems for the treatment of cancer. The better delivery of OxPt with weaker side effects could be generated by the exertion of Oxaliplatin, which involves the aggregation of new particles and multifaceted nanocarriers to compose a nanocomposite with both inorganic and organic nanoparticles.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Liposomas , Neoplasias/tratamiento farmacológico , Oxaliplatino
13.
J Biomol Struct Dyn ; 40(17): 7786-7795, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33764274

RESUMEN

Organophosphates are extremely toxic compounds that use extensively in agriculture and household as insecticides. However, their binding mechanism to bio-macromolecules especially blood proteins is not clearly understood. In this research, various spectroscopic techniques utilized to analyze the effect of Tetraethyl Pyrophosphate (TEPP), as an organophosphorus insecticide, on the structure, function, stability, and aggregation of adult human hemoglobin and also hemolysis potential of the TEPP on red blood cells (RBCs) examined. Molecular docking was used for TEPP binding to human Hemoglobin (Hb), too. The results demonstrated that the TEPP insecticide has the potential for lysing RBCs. UV-Vis experiment indicated that globin part and heme group influenced by TEPP. Oxygen affinity measurements revealed the formation of deoxy-Hb and met-Hb, also decreased in oxygen affinity of Hb upon interaction with TEPP that is due to heme destruction. Fluorescence spectroscopy confirmed the production of heme degradation species after interaction of Hb with TEPP, which is inconsistent with oxygen affinity measurements. Thermal and aggregation studies indicated that TEPP induced aggregation of Hb in a concentration manner and Tm of protein reduced to lower temperatures. Docking's study also showed that TEPP interacts with Hb through hydrophobic interactions, which confirms UV-Vis results. ATR-FTIR study also revealed that TEPP can induce changes in the alpha helix element of Hb's secondary structure. Totally, Experimental and theoretical results indicate that tetraethyl pyrophosphate has unfavorable effects on hemoglobin structure and function.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Insecticidas , Adulto , Proteínas Sanguíneas , Hemo/química , Hemoglobinas/química , Humanos , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Organofosfatos , Compuestos Organofosforados/farmacología , Oxígeno/metabolismo , Espectrometría de Fluorescencia
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120626, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34815175

RESUMEN

In this study, a novel colorimetric sensor was introduced to detect tobramycin (TOB) based on controlling the catalytic activity of gold nanoparticles (AuNPs) by the three-way junction aptamer pockets. In the absence of TOB, the surfaces of AuNPs were masked by the three-way junction pockets that prevented their catalytic activation for the reduction of 4-Nitrophenol in the presence of NaBH4. While the formation of the pockets was prevented in the presence of TOB that facilitated the 4-Nitrophenol access to AuNPs. Hence, the catalytic reduction of 4-Nitrophenol induced a color change of the solution from yellow to colorless, highlighting the presence of the target. The aptasensing assay provided good target specificity with a detection limit (LOD) of 1.16 µM and a linear dynamic range over 4-32 µM. The aptasensor was successfully applied to quantitatively monitor TOB in the human serum and milk samples with the LODs of 1.38 and 1.42 µM and recovery values of 94.87-105.75% and 93.75-105.31%, respectively.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Colorimetría , ADN , Oro , Humanos , Límite de Detección , Tobramicina
15.
Lasers Med Sci ; 36(9): 1831-1836, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33415460

RESUMEN

Benzene is volatile organic hydrocarbon which is widely used in a wide range of industries. Studies have shown that exposure to benzene consequences serious health risks for human. Understanding the effect and risks of environmental hazard materials in the laser therapy of skin is interesting which can show useful or harmful role of these effects in therapies. In this study, the effect of low-level laser therapy was investigated on benzene-induced cytotoxicity on human skin fibroblast cells (HU02). Human skin fibroblast cells (HU02) were exposed to various concentrations of benzene (0-100 µg/mL) and incubated for 2 h. Then the effect of low-level laser therapy (LLLT) at 660-nm wavelength with 3 J/cm2 energy for 90 s was investigated on the viability of the cells exposed to benzene using MTT assay and inverted light microscope. The effect of low-level laser therapy on the viability of the cells was positive at concentrations 0-15 µg/mL but negative at higher concentrations than 15 µg/mL. Low-level laser therapy in low concentrations of benzene decreases the cytotoxicity caused by benzene and maintains cell viability. At high concentrations and in the presence of low-level laser therapy, the cell viability decreased compared to dark experiment. The morphology study of the cells using inverted light microscopy has confirmed the MTT results.


Asunto(s)
Benceno , Terapia por Luz de Baja Intensidad , Benceno/toxicidad , Proliferación Celular , Supervivencia Celular , Fibroblastos , Humanos , Rayos Láser
16.
Int J Biol Macromol ; 163: 348-357, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32629052

RESUMEN

Compatible solutes or osmolytes stabilize proteins against different stress conditions. In this study, the effect of trehalose and proline against pH and thermal stress is examined on PersiXyn2. Trehalose and proline lowered the optimum pH of PersiXyn2 and increased the optimum temperature of its activity, which is more desirable for its industrial application. These osmolytes improved PersiXyn2 storage stability for a long 24-day period. Also, both osmolytes retained the catalytic activity of the enzyme in the presence of different concentrations of metal ions but trehalose had the most effect in the presence of Mg2+ and proline had most significant effect in the presence of Mn2+. In addition, the effect of detergents on the enzyme in the presence of proline and trehalose increased the activity of PersiXyn2. Chemical stability studies using urea as a denaturant indicated that both of the osmolytes improved the conformational stability of PersiXyn2. According to molecular dynamic studies, a definite change in conformation of PersiXyn2 was detected in the presence of proline and trehalose. Based on findings in the current study, given the importance of xylanases activity and stability in extreme conditions for industrial applications, two natural osmolytes were able to activate and stabilize PersiXyn2.


Asunto(s)
Carbohidratos/química , Caseínas/química , Lípidos/química , Proteínas de Vegetales Comestibles/química , Prolina/química , Trehalosa/química , Catálisis , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Estabilidad Proteica , Temperatura , Termodinámica
17.
J Biochem Mol Toxicol ; 33(7): e22325, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31004546

RESUMEN

Cartap hydrochloride is a mildly perilous insecticide known as "Padan" which is used largely in agricultural farms to control weevil and caterpillars. The over use of cartap causes harmful effects on human health. Since the blood may acts as a target and carrier for insecticides, the effect of these compounds on blood in mammalian toxicology is very important. Hemoglobin is a tetramer protein that play critical role in oxygen transport. The aim of this study was to analyze and compare the function and structural changes of hemoglobin in the presence of different concentrations of cartap by employing different spectroscopic techniques. The obtained results show that cartap has a high hemolytic effect which is increased with cartap concentration and reduces the thermal midpoint of hemoglobin. Fluorescence measurements reveal heme degradation at different concentrations of cartap. In consequence of theoretical and experimental results, cartap has an undesirable effect on hemoglobin structure and function.


Asunto(s)
Hemo/química , Hemoglobinas/química , Insecticidas/química , Proteolisis , Tiocarbamatos/química , Animales , Hemólisis , Humanos
18.
J Mol Recognit ; 30(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917590

RESUMEN

Because of the extensive use of methyl tert-butyl ether (MTBE) as an additive to increase the octane quality of gasoline, the environmental pollution by this compound has increased in recent decades. Environmental release of MTBE may lead to its entry to the blood stream through inhalation or drinking of contaminated water, and its interactions with biological molecules such as proteins. The present study was proposed to comparatively investigate the interactions of MTBE with hemoglobin (Hb) from diabetic and nondiabetic individuals using various spectroscopic methods including UV-visible, fluorescence, chemiluminescence, and circular dichroism. These results demonstrated the effects of MTBE on heme degradation of Hb and the reaction of these degradation products with water generating reactive oxygen species. Interaction of Hb with MTBE enhanced its aggregation rate and decreased lag time, indicating the antichaperone activity of MTBE upon interaction with Hb. Furthermore, the diabetic Hb showed more severe effects of MTBE, including heme degradation, reactive oxygen species production, unfolding, and antichaperone behavior than the nondiabetic Hb. The results from molecular docking suggested that the special interaction site of MTBE in the vicinity of Hb heme group is responsible for heme degradation.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Hemo/química , Hemoglobinas/efectos de los fármacos , Éteres Metílicos/efectos adversos , Contaminantes Atmosféricos/farmacología , Animales , Dicroismo Circular , Diabetes Mellitus , Hemoglobinas/química , Humanos , Luminiscencia , Éteres Metílicos/química , Éteres Metílicos/farmacología , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Desplegamiento Proteico , Especies Reactivas de Oxígeno/metabolismo
19.
Int J Biol Macromol ; 93(Pt A): 868-878, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27642128

RESUMEN

Changes in human environment and lifestyle over the last century have caused a dramatic increase in the occurrence of diabetes. Research of past decades illustrated that vitamin D and E have a key role in the improvement of diabetes by reducing oxidative stress, protein glycosylation, insulin resistance and also improving beta cell function. Binding properties and conformational changes of human insulin upon interaction with vitamins D3 and E (α-tocopherol) were investigated by spectroscopy, differential scanning calorimetry (DSC) and molecular dynamic simulation. Tyrosine fluorescence quenching studies indicates changes in the human insulin conformation in the presence of vitamins. Binding constants of vitamins D3 and E for human insulin were determined to be 2.7 and 1.5 (×10-5M-1) and the corresponding average numbers of binding sites were determined to be 1.3 and 1.2, respectively. Far- and near-UV circular dichroism studies showed that vitamin E can significantly change the secondary and tertiary structures of human insulin via an increase in the content of α-helix structure. Results of DSC showed that both vitamins D3 and E stabilize the structure of human insulin. Molecular dynamic simulation results indicated that vitamin D3 decreases the helical and strand structural contents of human insulin, but vitamin E stabilizes more regular secondary structures such as helical and strand structural contents as shown by experimental results.


Asunto(s)
Colecalciferol/química , Insulina/química , Vitamina E/química , Secuencia de Aminoácidos , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Dispersión Dinámica de Luz , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Termodinámica
20.
Int J Biol Macromol ; 80: 610-4, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26193678

RESUMEN

Interaction of methyl tert-butyl ether (MTBE) with proteins is a new look at its potential adverse biological effects. When MTBE is released to the environment it enters the blood stream through inhalation, and could affect the properties of various proteins. Here we investigated the interaction of MTBE with insulin and its effect on insulin structural changes. Our results showed that insulin formed a molten globule (MG)-like structure in the presence of 8 µM MTBE under physiological pH. The insulin structural changes were studied using spectroscopy methods, viscosity calculation, dynamic light scattering and differential scanning calorimetry. To delineate the mechanisms involved in MTBE-protein interactions, the formation of reactive oxygen specious (ROS) and formation of protein aggregates were measured. The chemiluminscence experiments revealed an increase in ROS production in the presence of MTBE especially in the MG-like state. These results were further confirmed by the aggregation tests, which indicated more aggregation of insulin at 40 µM MTBE compared with 8 µM. Thus, the formation of initial aggregates and exposure of the hydrophobic patches upon formation of the MG-like state in the presence of MTBE drives protein oxidation and ROS generation.


Asunto(s)
Insulina/química , Éteres Metílicos/química , Especies Reactivas de Oxígeno/química , Hidrodinámica , Insulina/metabolismo , Éteres Metílicos/metabolismo , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...