Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Biomol Struct Dyn ; : 1-12, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38353497

In the current work, computational methods were used to investigate new isoxazole derivatives that could be used as tubulin inhibitors. The study aims to develop a reliable quantitative structure-activity relationship (QSAR) model, following the criteria set by Golbraikh, Tropsha, and Roy. As a result, seven candidate compounds were developed, all having higher activity than the well-established anticancer agent Cisplatin (Cisp). According to the ADMETox in silico test, the candidates Pr4, Pr5, and P6 can be toxic. As a result, we have chosen to focus our study on compounds Pr1, Pr2, and Pr3. Molecular docking analysis revealed that drug candidate Pr2 exhibits the highest stability within the oxidized quinone reductase 2 (PDB ID: 4zvm), target receptor (ΔG(Pr2) = ΔG(Pr3) = -10.4 < ΔG(Pr1) = -10.0 < ΔG(Cisp) = -7.3 kcal/mol). This finding aligns with the activity predictions made by the QSAR model. Furthermore, molecular dynamics simulations of the Pr2-4zvm complex over 100 ns confirm the ligand's robust stability within the receptor's active site, supporting the results obtained from molecular docking and the QSAR model predictions. The CaverDock software was utilized to identify the tunnels likely to be followed by ligands moving from the active site to the receptor surface. This analysis also helped in determining the biological efficacy of the target compounds. The results indicated that the Pr2 compound is more effective than the others. Finally, the computer-assisted retrosynthesis process of two high confidence sequences was used to synthesize drug candidates.Communicated by Ramaswamy H. Sarma.


3D-QSAR methods were used to design eight new compounds and anti-tubulin agents.3D-QSAR models were validated by Golbraikh­Tropsha and Roy methods.The toxicity and pharmacokinetics of the proposed compounds were identified by the Lipinski rule of five, Veber rules, and ADMETox.Pr2 and Pr3 had a reasonable affinity to the receptor protein (ID PDB: 4zvm) based on molecular docking, reactivity indices, and molecular dynamics simulation.Metadynamics was used to study ligand transport in the receptor (ID PDB:3zvm).

2.
J Biomol Struct Dyn ; : 1-14, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37655700

The efficacy of 40 synthesized variants of 3,5-diaryl-1H-pyrazole and spiropyrazoline' derivatives as acetylcholinesterase inhibitors is verified using a quantitative three-dimensional structure-activity relationship (3D-QSAR) by comparative molecular field analysis (CoMFA) and molecular similarity index analysis (CoMSIA) models. In this research, different field models proved that CoMSIA/SE model is the best model with high predictive power compared to several models (Qved2 = O.65; R2 = 0.980; R2test = 0.727). Also, contour maps produced by CoMSIA/SE model have been employed to prove the key structural needs of the activity. Consequently, six new compounds have been generated. Among these compounds, M4 and M5 were the most active but remained toxic and had poor absorption capacities. While the M1, M2, M3 and M6 remained highly active while respecting ADMET's characteristics. Molecular docking results showed compound M2 better with acetylcholinesterase than compound 22. The interactions are classical hydrogen bonding with residues TYR:124, TYR:72, and SER:293, which play a critical role in the biological activity as AChE inhibitors. MD results confirmed the docking results and showed that compound M2 had satisfactory stability with (ΔGbinding = -151.225 KJ/mol) in the active site of AChE receptor compared with compound 22 (ΔGbinding = -133.375 KJ/mol). In addition, both compounds had good stability regarding RMSD, Rg, and RMSF. The previous results show that the newly designed compound M2 is more active in the active site of AChE receptor than compound 22.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; : 1-20, 2023 Jul 09.
Article En | MEDLINE | ID: mdl-37424193

BRAF inhibitors are known to be an effective therapeutic target for treating melanoma and other types of cancer. Using 3D-QSAR, molecular docking, and MD simulations, this study evaluated various imidazo[2,1-b]oxazole derivatives that function as mutant BRAF kinase inhibitors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were used to create the 3D-QSAR models. CoMSIA/SEHA model has solid predictive power across several models (Q2 = 0.578; R2 = 0.828; R2pred = 0.74) and is the best model according to the numerous field models generated. The created model's predictive power was evaluated through external validation using a test set. CoMSIA/SEHA contour maps collect information that can be used to identify critical regions with solid anticancer activity. We developed four inhibitors with high predicted activity due to these observations. ADMET prediction was used to assess the toxicity of the proposed imidazo[2,1-b]oxazole compounds. The predictive molecules (T1-T4) demonstrated good ADMET properties, excluding the toxic active compounds 11r from the database. Molecular docking was also used to determine the patterns and modes of interactions between imidazo[2,1-b]oxazole ligands and receptors, which revealed that the proposed imidazo[2,1-b]oxazole scaffold was stable in the receptor's active site (PDB code: 4G9C). The suggested compounds (T1-T4) were subjected to molecular dynamics simulations lasting 100 ns to determine their binding free energies. The results showed that T2 had a more favorable binding free energy (-149.552 kJ/mol) than T1 (-112.556 kJ/mol), T3 (-115.503 kJ/mol), and T4 (-102.553 kJ/mol). The results suggest that the imidazo[2,1-b]oxazole compounds investigated in this study have potential as inhibitors of BRAF kinase and could be further developed as anticancer drugs. Highlights22 imidazo[2,1-b]oxazole compounds were subjected to research on three-dimensional quantitative conformational relationships.Using contour maps from 3D-QSAR models as a guide was used to figure out the areas and strategies for structural optimization.Combined molecular docking, molecular dynamics simulations, and binding free energy calculations to verify the inhibitor activity of the proposed 22 imidazo[2,1-b]oxazole compounds.Four potential B-RAF Kinase inhibitors were discovered, providing theoretical clues for developing a highly anticancer agent.Communicated by Ramaswamy H. Sarma.

4.
Comput Biol Chem ; 104: 107855, 2023 Jun.
Article En | MEDLINE | ID: mdl-37023640

Quantitative structure activity relationship (QSAR) studies on pyrrolidine derivatives have been established using CoMFA, CoMSIA, and Hologram QSAR analysis to estimate the values (pIC50) of gelatinase inhibitors. When the CoMFA cross-validation value, Q², was 0.625, the training set coefficient of determination, R² was 0.981. In CoMSIA, Q² was 0.749 and R² was 0.988. In the HQSAR, Q² was 0.84 and R² was 0.946. Visualization of these models was performed by contour maps showing favorable and unfavorable regions for activity, while visualization of HQSAR model was performed by a colored atomic contribution graph. Based on the results obtained of external validation, the CoMSIA model was statistically more significant and robust and was selected as the best model to predict new, more active inhibitors. To study the modes of interactions of the predicted compounds in the active site of MMP-2 and MMP-9, a simulation of molecular docking was realized. A combined study of MD simulations and calculation of free binding energy, were also carried out to validate the results obtained on the best predicted and most active compound in dataset and the compound NNGH as control compound. The results confirm the molecular docking results and indicate that the predicted ligands were stable in the binding site of MMP-2 and MMP-9.


Gelatinases , Matrix Metalloproteinase 2 , Molecular Docking Simulation , Matrix Metalloproteinase 9 , Binding Sites , Quantitative Structure-Activity Relationship
5.
J Biomol Struct Dyn ; 41(23): 13798-13814, 2023.
Article En | MEDLINE | ID: mdl-36841617

A series of pyrrolidine derivatives have been used to study the main structural requirements for designing novel Mcl-1 inhibitors. For this purpose, three models CoMSIA, CoMFA and HQSAR were generated using QSAR molecular modeling techniques. The statistical results of the CoMFA (Q2 = 0.689; R = 0.999; R2pred = 0.986), CoMSIA (Q2 = 0.614; R2 = 0.923; R2pred = 0.815) and HQSAR (Q2= 0.603; R2 = 0.662; R2pred = 0.743) models showed good stability and predictability. The results of the models were presented as contours and colored fragments indicating the favorable and unfavorable contribution to the inhibitory activity of Mcl-1. Based on the obtained results, four new compounds were designed with more potent predicted pIC50 inhibitory activity. The ADME/Tox results and the pharmacokinetic properties revealed that these four compounds are orally bioavailable and show good permeability. In addition the four compounds showing non-inhibitors of CYP3A4 and CYP2D6 with the exception of Pred03. At the level of toxicity profile, the compounds Pred01, Pred02 and Pred03 showed interesting results and showed no AMES toxicity, no hERG inhibition and no skin sensitization. Molecular docking results were used to uncover the mode of interaction between the ligand and key residues of protein binding site. Molecular docking results were supported by molecular simulation and binding free energy estimation (MMPBSA). These results demonstrate the stability of the analyzed compounds in the target protein binding site during a 100 ns trajectory. Finally, all these results create a strong lead to develop promising new Pyrrolidine-based inhibitors against Mcl-1.Communicated by Ramaswamy H. Sarma.


Leukemia , Quantitative Structure-Activity Relationship , Humans , Molecular Docking Simulation , Myeloid Cell Leukemia Sequence 1 Protein , Myeloid Cells , Molecular Dynamics Simulation
6.
Mol Divers ; 27(5): 2111-2132, 2023 Oct.
Article En | MEDLINE | ID: mdl-36239842

Fluconazole and Voriconazole are individual antifungal inhibitors broadly adopted for treating fungal infections, including Candida Albicans. Unfortunately, these medicines clinically used have significant side effects. Consequently, the improvement of safer and better therapy became more indispensable. In this study, a set of 27 1,2,4-triazole compounds have been tested as potential Candida Albicans inhibitors by using different theoretical methods. The created comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) contour maps significantly impacted the development of novel Candida Albicans inhibitors with valuable activities. The mode of interactions between the 1,2,4-triazole inhibitors and the targeted receptor was studied by molecular docking simulation. The proposed new molecule P1 showed satisfied stability in the active pocket of the targeted receptor compared to the more active molecule in the dataset compared to Fluconazole medication. Meanwhile, the binding energy obtained by molecular docking for molecule P1 is - 9.3 kcal/mol compared with - 6.7 kcal/mol for Fluconazole medication. Also, MM/GBSA value obtained by molecular dynamics simulations at 100 ns for molecule P1 is - 33.34 kcal/mol compared with - 15.85 kcal/mol for Fluconazole medication. In addition, molecule P1 showed good oral bioavailability and was non-toxic according to ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties. Therefore, the results indicated compound P1 might be a future inhibitor of Candida Albicans infection.


Molecular Dynamics Simulation , Triazoles , Molecular Docking Simulation , Triazoles/pharmacology , Candida albicans , Fluconazole/pharmacology , Quantitative Structure-Activity Relationship
7.
Heliyon ; 7(3): e06603, 2021 Mar.
Article En | MEDLINE | ID: mdl-33817388

Coronavirus (COVID-19), an enveloped RNA virus, primarily affects human beings. It has been deemed by the World Health Organization (WHO) as a pandemic. For this reason, COVID-19 has become one of the most lethal viruses which the modern world has ever witnessed although some established pharmaceutical companies allege that they have come up with a remedy for COVID-19. To that end, a set of carboxamides sulfonamide derivatives has been under study using 3D-QSAR approach. CoMFA and CoMSIA are one of the most cardinal techniques used in molecular modeling to mold a worthwhile 3D-QSAR model. The expected predictability has been achieved using the CoMFA model (Q2 = 0.579; R2 = 0.989; R2test = 0.791) and the CoMSIA model (Q2 = 0.542; R2 = 0.975; R2test = 0.964). In a similar vein, the contour maps extracted from both CoMFA and CoMSIA models provide much useful information to determine the structural requirements impacting the activity; subsequently, these contour maps pave the way for proposing 8 compounds with important predicted activities. The molecular surflex-docking simulation has been adopted to scrutinize the interactions existing between potentially and used antimalarial molecule on a large scale, called Chloroquine (CQ) and the proposed carboxamides sulfonamide analogs with COVID-19 main protease (PDB: 6LU7). The outcomes of the molecular docking point out that the new molecule P1 has high stability in the active site of COVID-19 and an efficient binding affinity (total scoring) in relation with the Chloroquine. Last of all, the newly designed carboxamides sulfonamide molecules have been evaluated for their oral bioavailability and toxicity, the results point out that these scaffolds have cardinal ADMET properties and can be granted as reliable inhibitors against COVID-19.

8.
J Biomol Struct Dyn ; 39(12): 4522-4535, 2021 Aug.
Article En | MEDLINE | ID: mdl-32552534

The new SARS-CoV-2 coronavirus is the causative agent of the COVID-19 pandemic outbreak that affected whole the world with more than 6 million confirmed cases and over 370,000 deaths. At present, there are no effective treatments or vaccine for this disease, which constitutes a serious global health crisis. As the pandemic still spreading around the globe, it is of interest to use computational methods to identify potential inhibitors for the virus. The crystallographic structures of 3CLpro (PDB: 6LU7) and RdRp (PDB 6ML7) were used in virtual screening of 50000 chemical compounds obtained from the CAS Antiviral COVID19 database using 3D-similarity search and standard molecular docking followed by ranking and selection of compounds based on their binding affinity, computational techniques for the sake of details on the binding interactions, absorption, distribution, metabolism, excretion, and toxicity prediction; we report three 4-(morpholin-4-yl)-1,3,5-triazin-2-amine derivatives; two compounds (2001083-68-5 and 2001083-69-6) with optimal binding features to the active site of the main protease and one compound (833463-19-7) with optimal binding features to the active site of the polymerase for further consideration to fight COVID-19. The structural stability and dynamics of lead compounds at the active site of 3CLpro and RdRp were examined using molecular dynamics (MD) simulation. Essential dynamics demonstrated that the three complexes remain stable during simulation of 20 ns, which may be suitable candidates for further experimental analysis. As the identified leads share the same scaffold, they may serve as promising leads in the development of dual 3CLpro and RdRp inhibitors against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


COVID-19 , Pandemics , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase , SARS-CoV-2
...