Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Genet Med ; 25(1): 90-102, 2023 01.
Article En | MEDLINE | ID: mdl-36318270

PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants. METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.


Brain Diseases , Dystonia , Movement Disorders , Humans , Animals , Rats , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism , Movement Disorders/genetics , Amines , Brain/metabolism
2.
Clin Genet ; 100(5): 615-623, 2021 11.
Article En | MEDLINE | ID: mdl-34341987

Congenital limb deficiency (CLD), one of the most common congenital anomalies, is characterized by hypoplasia/aplasia of one or more limb bones and can be isolated or syndromic. The etiology in CLD is heterogeneous, including environmental and genetic factors. A fraction remains with no etiological factor identified. We report the study of 44 Brazilian individuals presenting isolated or syndromic CLD, mainly with longitudinal defects. Genetic investigation included particularly next-generation sequencing (NGS) and/or chromosomal microarray. The overall diagnostic yield was 45.7%, ranging from 60.9% in the syndromic to 16.7% in the non-syndromic group. In TAR syndrome, a common variant in 3´UTR of RBM8A, in trans with 1q21.1 microdeletion, was detected, corroborating the importance of this recently reported variant in individuals of African ancestry. NGS established a diagnosis in three individuals in syndromes recently reported or still under delineation (an acrofacial dysostosis, Coats plus and Verheij syndromes), suggesting a broader phenotypic spectrum in these disorders. Although a low rate of molecular detection in non-syndromic forms was observed, it is still possible that variants in non-coding regions and small CNVs, not detected by the techniques applied in this study, could play a role in the etiology of CLD.


Genetic Association Studies , Genetic Predisposition to Disease , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/genetics , Phenotype , Brazil , Child, Preschool , Consanguinity , Female , Genetic Association Studies/methods , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Pedigree , Sequence Analysis, DNA , Syndrome
...